Geometry

Parallel Lines Cut by Transversals
 (Definitions, Examples, Applications \& Proofs)

Includes Notes, Practice Quiz, and Solutions

Introduction: Two lines cut by a transversal
"Corresponding angles":
Angles in the same relative position

Example:
UL upper left angle (top) corresponds to
UL upper left angle (bottom)
"Interior angles" Angles between the two lines

"Alternate angles":
Angles on opposite sides of the transversal

Parallel Lines Cut by a Transversal

If two parallel lines are cut by a transversal, then....

Corresponding Angles

Vertical Angles

Alternate Interior Angles

Alternate Exterior Angles
Note: The converse of each theorem is true.
EX: If alternate interior angles are congruent, then the lines are parallel

Same Side Interior Angles

Same Side Exterior Angles

Examples:

Examples: In the diagram $\mathrm{A} \| \mathrm{B}$ and $\mathrm{C} \| \mathrm{D}$.
Identify the pairs of corresponding angles that include $\angle 1$
$1 \& 3$ are corresponding angles
$1 \& 9$ are corresponding angles

Which pair of alternate interior angles include $\angle 3$?
6 and 3 are alternate interior angles

Which pairs of alternate interior angles include $\angle 10$?
$10 \& 15$ are alternate interior angles
$10 \& 5$ are alternate interior angles

List all the angles that are congruent to $\angle 13$
13 \& 10 vertical angles
$13 \& 15$ corresponding angles
$13 \& 5$ corresponding angles
13 \& 2 alternate exterior angles
$13 \& 12$ alternate exterior angles
also, 7 and 4 are congruent to 13
(transitive property)

Proving the sum of interior angles of a triangle is 180 degrees (using Parallel Lines Cut by a Transversal)

Statements	Reasons
1. Triangle ABC	1. Given
2. Auxiliary $\overline{\mathrm{LM}}$ is line parallel to $\overline{\mathrm{BC}}$ through A	2. (parallel postulate) A line can be drawn through a point parallel to a given line.
3. $\angle \mathrm{LAB}+\angle \mathrm{a}+\angle \mathrm{MAC}=180^{\circ}$	3. (angle addition postulate \&) measure of a straight angle is 180 degrees

4. $\angle \mathrm{b}=\angle \mathrm{LAB}$ $\angle \mathrm{c}=\angle \mathrm{MAC}$
5. $\angle \mathrm{a}+\angle \mathrm{b}+\angle \mathrm{c}=180^{\circ}$
6. if parallel lines cut by a transversal, alternate interior angles congruent
7. substitution

Using Parallel Lines Cut by Transversals: Theorems and Converses

Example: Given: $l \| m$ and $r \| s$

$$
\text { Prove: } 1 \stackrel{\cong}{=} 16
$$

Statements	Reasons	
1) $l \\| m$	1) Given	
2) $\angle 1 \xlongequal[=]{\cong} \angle 5$	2) If parallel lines cut by transversal, then corresponding angles congruent	
3) $\angle 5 \cong \angle 8$	3) Vertical angles are congruent	
4) $\angle 1 \cong \angle 8$	4) Transitive property	
5) $r \\| s$	5) Given	
6) $\angle 8 \cong \angle 16$	6) Corresponding Angles	
7) $\angle 1 \cong \angle 16$	7) Transitive property	

Example: Given: $l \| m$ and $r \| s$
Prove: Angles 9 and 6 are supplementary

Statements	Reasons	
1) $r \\| s$	1) Given	
2) $\angle 9 \cong \angle 4$	2) If parallel lines cut by transversal then alternate interior angles congruent	
3) Angles 4 and 2 are	3) Definition of Supplementary angles	
supplementary	4) Substitution property	
4) $\angle 9$ supp. to $\angle 2$	5) Given	
5) $l \\| m$	6) If parallel lines cut by transversal,	
then corresponding angles congruent		
6) $\angle 2 \cong \angle 6$	7) Substitution property	
7) Angles 9 and 6 are		
supplementary		

 supplementary

Example: Given: $r \| s$

$$
\angle 7=\angle 10
$$

Prove: $c \| d$

Statements	Reasons	
1) $r \\| s$	1) Given	
2) $\angle 2=\angle 10$	2) If parallel lines cut by transversal, then corresponding angles congruent	
3) $\angle 7=\angle 10$	3) Given	
4) $\angle 2=\angle 7$	4) Transitive property (or Substitution)	
5) (converse of alt. interior angles)		
If 2 lines cut by a transversal form		
congruent alternate interior angles,		
then the 2 lines are parallel		

NOTE: Although c and d look parallel, their angles cannot be considered congruent/supplementary UNTIL they are proven to be parallel!!
For example, angles 1 and 5 are not considered congruent UNTIL c and d are proven parallel...

$$
\angle \mathrm{AEK}=\angle \mathrm{BED}
$$

Prove: $\triangle \mathrm{ABE}$ is isosceles

Recognizing the alternate interior angles..

Example: Given: Circle E
$\triangle \mathrm{COE}$ is scalene
Prove: < $\mathrm{C} \not \approx \angle \mathrm{ESN}$

Statements	Reasons	
1) $\overline{\mathrm{AB}} \\| \overline{\mathrm{EC}}$	1) Given	

2) $\lfloor\mathrm{AEK}=\angle \mathrm{BED} \quad$ 2) Given
3) $\left\lfloor\mathrm{BED}=\angle \mathrm{EBA} \quad\right.$ 3) If parallel lines cut by transversal, then $\begin{array}{l}\text { alternate angles are conguent }\end{array}$ $\angle \mathrm{AEK}=\angle \mathrm{BAE}$
4) $\lfloor\mathrm{EBA}=\angle \mathrm{BAE}$
5) $\triangle \mathrm{ABE}$ is isosceles
6) Transitive property
7) If base angles are congruent, then triangle is isosceles
$\mathrm{C}=\mathrm{ESN} \quad$ or $\quad \mathrm{C} \neq \mathrm{ESN}$

Statements	Reasons	
1) CircleE	1) Given	
2) $\triangle \mathrm{COE}$ is scalene	2) Given	
3) $\angle \mathrm{C}=\angle \mathrm{ESN}$	3) Assume for Contradiction	
4) $\overline{\mathrm{ES}}=\overline{\mathrm{EN}}$	4) All radii are congruent	
5) $\overline{\mathrm{CO} \\| \overline{\mathrm{SN}}}$5) If corresponding angles are congruent, then lines are parallel		
6) $\angle \mathrm{O}=\angle \mathrm{ENS}$	6) If lines are parallel, then corresponding angles are congruent	
7) $\angle \mathrm{ESN}=\angle \mathrm{ENS}$	7) If congruent sides, then congruent angles	
8) $\angle \mathrm{O}=\angle \mathrm{C}$	8) Transitive property	
9) $\triangle \mathrm{COE}$ is isosceles	9) If base angles are congruent, then triangle	
is isosceles		

However, 2) and 9) contradict each other

Geometry Applications:

EXAMPLE: If quadrilateral PLAY has angles

> P: 59 degrees
> L: 37 degrees
> A: 143 degrees
> Y: 121 degrees

Which sides are parallel? Sketch the figure.

Since the quadrilateral is PLAY, the figure will have consecutive vertices P-L-A-Y

If parallel lines are cut by a transversal, then same side interior angles are supplementary.

> Since $\angle \mathrm{L}$ and $\angle \mathrm{A}$ are supplementary and $\angle \mathrm{P}$ and $\angle \mathrm{Y}$ are supplementary

$$
\overline{\mathrm{PL}} \| \overline{\mathrm{YA}}
$$

Trapezoid

EXAMPLE: If C and D are parallel, are A and B parallel?

Since $C \| D$, then

$$
\begin{aligned}
(x+26) & =2 x \quad \text { corresponding angles } \\
x & =26
\end{aligned}
$$

$$
\begin{aligned}
& \text { Because } x=26, \\
& x+26=52 \ldots
\end{aligned}
$$

$$
\text { so, }\lfloor 1=52 \text { vertical angles }
$$

$$
126+52=178
$$

If same side interior angles $\neq 180$, then lines A and B are NOT parallel

The Math Guy misunderstood the Architect's suggestion...

Building
Materials

Practice Exercises - \rightarrow

I. Determine the following:

1) $\mathrm{x}=\mathrm{y}=\mathrm{m}$
$l \| m$
2) $\begin{aligned} \mathrm{d} & = \\ \text { e } & =\end{aligned}$

$\triangle \mathrm{ABC}$ is Isosceles triangle $\overline{\mathrm{AC}} \cong \overline{\mathrm{AB}}$ MP \| BC
3) $\mathrm{m} \angle \mathrm{r}=$

4)

$\angle \mathrm{A}=$
$\angle \mathrm{B}=$
$\angle \mathrm{C}=$
6) $\mathrm{x}=$
$y=$
Parallel lines cut by Transversals

7) $\mathrm{m}=$
$p=$

8) $t=$
$\mathrm{v}=$

9) Use information to determine which lines (if any) must be parallel:
a) $1 \stackrel{\cong}{=} 9$ since 1 and 9 are corresponding, L || M
b) $4 \xlongequal{\bumpeq} 8$
c) $2 \stackrel{\cong}{=} 3$
d) $10 \cong 7$

10) Answer and identify the relevant theorem or postulate:

Parallel lines cut by Transversals (assume $l \| m$)
a)

b)

$1=100$ supplemetary
$2=80$ corresponding angles
$1=$
$2=$
c)

$1=$
$2=$
d)

$1=$
$2=$
e)

$1=$
$2=$
f)

$1=$
$2=$
11) Fill in the possible angles from the given information...
a) $A \| B$ and $C \| D$

b) $T \| U$

Parallel Lines Cut by Transversals

II. Answer or prove the following:

1) Given $\overline{\mathrm{AD}} \| \overline{\mathrm{BC}}$

$$
\begin{aligned}
& \mathrm{m} \angle 1=5.8 \mathrm{x}+2.2 \\
& \mathrm{~m} \angle 2=4 \mathrm{x} \\
& \mathrm{~m} \angle 3=6.4 \mathrm{x}-4.4 \\
& \mathrm{~m} \angle 4=42
\end{aligned}
$$

Find $\mathrm{m} \angle 1=$
Are $\overline{\mathrm{DC}}$ and $\overline{\mathrm{AB}}$ parallel segments?
2) Given: $\overline{\mathrm{ST}}$ bisects $\angle \mathrm{RTV}$

$$
\overline{\mathrm{ST}} \| \overline{\mathrm{VA}}
$$

Prove: \triangle VAT is isosceles

Statements	Reasons

3) Given: $\overline{\mathrm{AB}} \| \overline{\mathrm{CD}} ; \overline{\mathrm{AB}} \xlongequal[=]{=} \overline{\mathrm{CD}}$

C is the midpoint of $\overline{\mathrm{BE}}$
Prove: $\overline{\mathrm{AC}} \| \overline{\mathrm{DE}}$

Statements	Reasons

4) Given: $1 \| \mathrm{m}$

Find: measure of angle 1

5) find x :

6) Given: $\overline{\mathrm{AB}} \| \overline{\mathrm{CD}}$
$\overline{\mathrm{AB}} \xlongequal{\cong} \overline{\mathrm{CD}}$
Prove: $\overline{\mathrm{AD}} \| \overline{\mathrm{BC}}$
(Hint: Use an auxilary line segment)

Statements	Reasons

7) "Crook Problems"

b)

c)

Parallel Lines Cut by Transversals
III. Proofs

1) Given: $\overline{\mathrm{AB}} \xlongequal{\approx} \overline{\mathrm{CD}} \quad \overline{\mathrm{AG}} \stackrel{\cong}{=} \overline{\mathrm{BE}}$

$$
\overline{\mathrm{AG}} \| \overline{\mathrm{BE}}
$$

Prove: $\overline{\mathrm{GC}} \| \overline{\mathrm{ED}}$

Statements	Reasons

2) Given: $\odot \mathrm{O} \quad \angle 1 \cong \angle 2$

Prove: $\overline{\mathrm{AB}} \| \overline{\mathrm{CD}}$

Statements	Reasons

(Hint: This proof uses a "detour")

3) Given: $\overline{\mathrm{AB}} \| \overline{\mathrm{DE}}$
$\overline{\mathrm{AB}} \cong \overline{\mathrm{DE}}$
$\angle 1 \cong \angle 2$

Prove: $\overline{\mathrm{CD}} \cong \overline{\mathrm{FB}}$

4) Given: $\overline{\mathrm{AB}}=\overline{\mathrm{CD}}$
$\overline{\mathrm{BC}}=\overline{\mathrm{AD}}$
Prove $\overline{\mathrm{AB}} \| \overline{\mathrm{CD}}$

Statements	Reasons

IV. ${ }^{* *}$ Challenge Questions

1) In each group, identify the transversal. Then, describe the angle pairs.

2) Is d parallel to f ?

$$
-\underbrace{}_{-\ldots} \underbrace{\frac{4 \mathrm{x}-4^{\circ}}{3 \mathrm{x}+16^{\circ}}} \begin{aligned}
& 5 \mathrm{x}-28^{\circ} \\
&
\end{aligned} d
$$

SOLUTIONS- -

SOLUTIONS

I. Determine the following:

> 1) $x=65$
> $l \| m$
3) $\mathrm{m} \angle \mathrm{s}=140^{\circ}$

Draw an auxilary parallel line through the vertex of middle angle...
then, using supplementary angles: 60
alternate interior angles: 60 and 80
and
addition postulate,

$$
\mathrm{s}=60+80=140^{\circ}
$$

$$
\text { 2) } \begin{aligned}
\mathrm{d} & =72 \\
\mathrm{e} & =108
\end{aligned}
$$

since angle A is 36 , angle B and C are 72 and 72 (isosceles and sum is 180 degrees)

Since B is 72 , AMP is 72 (corresponding angles)

Since C is 72 , APM is 72 .. then, MPC is 108 (supplementary angles)

$\triangle \mathrm{ABC}$ is Isosceles triangle

$$
\begin{aligned}
& \overline{\mathrm{AC}} \cong \overline{\mathrm{AB}} \\
& \mathrm{MP} \| \mathrm{BC}
\end{aligned}
$$

Draw auxilary parallel lines.. Then, use supplementary angles, interior angles, and addition...

$$
\begin{aligned}
& 140+40=180 \\
& 38+142=180 \\
& 53-40=13 \\
& 13+38=51
\end{aligned}
$$

$\angle \mathrm{C}=30$

7) $\mathrm{m}=40$
$p=140$

$$
\begin{aligned}
2 \mathrm{~m}-40 & =\mathrm{m} \quad \text { (corresponding angles) } \\
\mathrm{m} & =40 \\
\mathrm{~m}+\mathrm{p} & =180 \quad \text { (supplementary) } \\
\text { so, } \mathrm{p} & =140
\end{aligned}
$$

$$
\text { 6) } \begin{aligned}
& x=110 \\
& y=30
\end{aligned}
$$

$$
x+(100-y)=180
$$

$$
x+(70)=180
$$

$$
x=110
$$

8) $t=106$
$\mathrm{v}=56 \quad \mathrm{t}+6=112 \quad$ (alternate exterior angles)

$2 \mathrm{v}=112$ (corresponding angles)
$\mathrm{v}=56$
9) Use information to determine which lines (if any) must be parallel:
a) $1 \stackrel{\cong}{=} 9$ since 1 and 9 are corresponding,
L \| M
b) $4 \bumpeq 8$ since 4 and 8 are corresponding, $A \| B \quad L$ and M may or may not be $\|$
c) $2 \cong 3 \quad 2$ and 3 are vertical angles, so we don't know if any lines are parallel..
d) $10 \cong 7$

e) $6 \xlongequal{\Omega} 15$
since 6 and 15 are alternate interior angles, then $\mathrm{L} \| \mathrm{M}$
f) $9 \cong 16$

9 and 16 are alternate exterior angles, so $A \| B$
g) $5 \stackrel{N}{=} 9$

If $5=9$, then $\mathrm{L} \| \mathrm{M}$ AND A || B (Or, NEITHER see d))
h) $13 \xlongequal{\cong} 14$

Since $13=14$, both must be right angles... However, that doesn't determine if the lines are parallel...
10) Answer and identify the relevant theorem or postulate: SOLUTIONS (assume $l \| m$)
a)

$1=100$ supplemetary
$2=80$ corresponding angles
b)

$1=72$ vertical angles
$2=108$ same side interior (supp.)
c)

$1=98$ alternate exterior
$2=98$ corresponding angles
d)

$1=72$ supplementary angles
$2=108$ alternate interior angles
e)

$1=103$ same side exterior
$2=77$ corresponding angles
f)

$1=94$ same side interior (supp.)
$2=86$ vertical angles
11) Fill in the possible angles from the given information...
a) $A \| B$ and $C \| D$
b) $T \| U$

**since we don't know if $M \| P$, some of the angles cannot be determined!

Parallel Lines Cut by Transversals
II. Answer or prove the following:

1) Given $\overline{\mathrm{AD}} \| \overline{\mathrm{BC}}$

$$
\begin{aligned}
& \mathrm{m} \angle 1=5.8 \mathrm{x}+2.2 \\
& \mathrm{~m} \angle 2=4 \mathrm{x} \\
& \mathrm{~m} \angle 3=6.4 \mathrm{x}-4.4 \\
& \mathrm{~m} \angle 4=42
\end{aligned}
$$

Find $\mathrm{m} \angle 1=66^{\circ}$
Are $\overline{\mathrm{DC}}$ and $\overline{\mathrm{AB}}$ parallel segments? NO
Since $A D$ and $B C$ are parallel, angles 1 and 3 are congruent:

$$
\begin{aligned}
5.8 \mathrm{x}+2.2 & =6.4 \mathrm{x}-4.4 \\
6.6 & =.6 \mathrm{x} \\
\mathrm{x} & =11
\end{aligned}
$$

angle 1: $5.8(11)+2.2=66$ angle 3: $6.4(11)-4.4=66$

SOLUTIONS

1 and 3 are alternate interior angles..

the measure of angle 4 is 42 degrees... the measure of angle 2 is $4(11)=44$ degrees

Since $\angle 4 \neq \angle 2$, then $\overline{\mathrm{AB}}$ and $\overline{\mathrm{DC}}$ are not parallel

2) Given: $\overline{\mathrm{ST}}$ bisects $\angle \mathrm{RTV}$ $\overline{\mathrm{ST}} \| \overline{\mathrm{VA}}$

Prove: \triangle VAT is isosceles

Statements	Reasons	Label the diagram	
1. $\overline{\mathrm{ST}}$ bisects $\angle \mathrm{RTV}$	1. Given	What are we trying to find?	
2. $\angle \mathrm{RTS} \cong$ ¢ $\angle \mathrm{STV}$	2. Definition of angle bisector	2 sides of \triangle VAT that are the same... (or, 2 angles	
3. $\overline{\mathrm{ST}} \\| \overline{\mathrm{VA}}$	3. Given	that are congruent)	
4. $\angle \mathrm{TAV} \cong$ ल $\angle \mathrm{RTS}$	4. If parallel lines cut by transversal, then corresponding $\angle \mathrm{s}$ congruent	Strategy: Use parallel lines cut by transversal to identify congruent angles	
5. $\angle \mathrm{STV} \cong \sim \sim \mathrm{TVA}$	5. If parallel lines cut by transversal, then alternate interior angles congruent		
6. $\angle \mathrm{TAV} \cong \angle \mathrm{TVA}$	6. Transitive property (from 4, 2, and 5.)		
7. $\overline{\mathrm{TV}} \stackrel{\Omega}{=} \overline{\mathrm{TA}}$	7. "sides-angles" (if 2 angles of triangle are congruent, then their opposite sides are \cong)		
8. \triangle VAT is isosceles	8. Definition of isosceles triangle		

Prove: $\overline{\mathrm{AC}} \| \overline{\mathrm{DE}}$

Statements	Reasons	
1) $\overline{A B} \\| \overline{C D}$	1) Given	
2) $\angle \mathrm{B} \cong \angle \mathrm{DCE}$	2) If parallel lines cut by transversal then corresponding angles $\stackrel{N}{\underline{N}}$	
3) $\overline{\mathrm{AB}} \stackrel{\mu}{=} \overline{\mathrm{CD}}$	3) Given	
4) C is midpoint of $\overline{\mathrm{BE}}$	4) Given	
5) $\overline{\mathrm{BC}} \cong \overline{\mathrm{CE}}$	5) Definition of midpoint	
6) $\triangle \mathrm{ABC}=\triangle \mathrm{DCE}$	6) Side-Angle-Side (SAS) $(3,2,5)$	
7) $\angle \mathrm{ACB}=\angle \mathrm{E}$	7) Corresponding Parts of Congruent Triangles are Congruent (CPCTC)	
8) $\overline{\mathrm{AC}} \\| \overline{\mathrm{DE}}$	8) If corresponding angles are \cong, then lines are parallel (converse of above theorem)	

4) Given: $1 \| \mathrm{m}$

Find: measure of angle 1

Since lines are parallel,
$x+4 y=5 y+23$
(corresponding angles)
$(2 \mathrm{x}+55)+(5 \mathrm{y}+23)=180$
(same side interiors are supplementary)

${ }_{(x+4 y)^{\circ}}$	
	$\sqrt{1} \begin{gathered} (2 x+55)^{\circ} \\ (5 y+23)^{\circ} \end{gathered}$
$y=8$	angle $1=63$ degrees
$x=31$	

5) find x :

$$
\begin{aligned}
& 3 \mathrm{x}+\mathrm{x}+6+70=180 \text { to check: plug in } \mathrm{x}=26 \ldots \\
& 4 \mathrm{x}=104 \text { angles are } 78+32=110 \\
& \text { and } 70 \\
& \mathrm{x}=26 \text { same side angles add up to } 180 \ldots
\end{aligned}
$$

6) Given: $\overline{\mathrm{AB}} \| \overline{\mathrm{CD}}$
$\overline{\mathrm{AB}} \xlongequal{\cong} \overline{\mathrm{CD}}$
Prove: $\overline{\mathrm{AD}} \| \overline{\mathrm{BC}}$
(Hint: Use an auxilary line segment)

Statements	Reasons	
$\overline{\mathrm{AB}}=\overline{\mathrm{CD}}$	1) Given	
2) $\overline{\mathrm{AC}}$ is a line segment	2) Auxilary line (2 points make a line) 3) $\overline{\mathrm{AB}} \\| \overline{\mathrm{CD}}$	
4) $\angle \mathrm{BAC}=\angle \mathrm{DCA}$ 4) Given		
4) If $\\|$ lines cut by transversal, then		
alternate interior angles congruent		

7) "Crook Problems"
a)
corresponding angles

c)

$$
\begin{gathered}
5 \mathrm{x}-2=68 \\
5 \mathrm{x}=70 \\
\mathrm{x}=14
\end{gathered}
$$

b)

III. Proofs

(Hint: This proof uses a "detour")

1) Given: $\overline{\mathrm{AB}} \xlongequal[=]{\mathrm{CD}} \overline{\mathrm{AG}} \stackrel{\cong}{=} \overline{\mathrm{BE}}$

$$
\overline{\mathrm{AG}} \| \overline{\mathrm{BE}}
$$

Prove: $\overline{\mathrm{GC}} \| \overline{\mathrm{ED}}$

2) Given: $\circlearrowleft \mathrm{O} \quad \angle 1 \cong \angle 2$

Prove: $\overline{\mathrm{AB}} \| \overline{\mathrm{CD}}$

Statements	Reasons
1. Circle with center O	1. Given

2. $\overline{\mathrm{OA}}=\overline{\mathrm{OB}}$
3. $\angle \mathrm{OBA} \cong \angle 1$
4. $\angle 1=\angle 2$
5. $\angle \mathrm{OBA}=\angle 2$
6. $\overline{\mathrm{AB}} \| \overline{\mathrm{CD}}$
7. All radii of circle are congruent
8. "Sides-Angles" (If 2 sides of \triangle are congruent, then opposite $\angle \mathrm{s}$ congruent)
9. Given
10. Transitive property (from statements 3,4)
11. If the corresponding angles of 2 lines (cut by transversal) are congruent, then the lines are parallel

label the diagram -- we see 1 and 2 are congruent...

Strategy: Verify that angle B is congruent to angle D (or angle C is congruent to angle A), because corresponding angles \longrightarrow parallel lines cut by transversal
$\overline{\mathrm{AB}} \bumpeq \overline{\mathrm{DE}}$
$\angle 1 \cong \angle 2$

Prove: $\overline{\mathrm{CD}} \xlongequal{\cong} \overline{\mathrm{FB}}$

Strategy: use the given statements to help prove that the triangles are congruent.. Then, use sides in triangles to ultimately get congruent segments...

4) Given: $\overline{\mathrm{AB}}=\overline{\mathrm{CD}}$
$\overline{\mathrm{BC}}=\overline{\mathrm{AD}}$
Prove $\overline{\mathrm{AB}} \| \overline{\mathrm{CD}}$

Statements	Reasons	
1) $\overline{\mathrm{AB}} \cong \overline{\mathrm{DE}}$	1) Given	
2) $\angle 1 \xlongequal{\prime} \angle 2$	2) Given	
$\begin{aligned} & \text { 3) } \angle 1 \text { and } \angle \mathrm{BAC} \text { are supplementary } \\ & \angle 2 \text { and } \angle \mathrm{DEF} \text { are supplementary } \end{aligned}$	3) Definition of supplementary angles (adjacent angles that form straight angle)	
4) $\angle \mathrm{BAC} \cong \angle \mathrm{NEF}$	4) Congruent supplements (If angles are supplementary to congruent angles, then they are congruent.)	
5) $\mathrm{AB} \\| \mathrm{DE}$	5) Given	
6) $\angle \mathrm{ABC} \cong \angle \mathrm{EDF}$	6) If parallel lines cut by transversal, then alternate exterior angles are congruent	
7) $\triangle \mathrm{ABC} \cong \cong \triangle \mathrm{EDF}$	7) ASA (Angle-Side-Angle) 4, 1, 6	
8) $\overline{\mathrm{CB}} \cong \overline{\mathrm{FD}}$	8) CPCTC (Corresponding Parts of Congruent Triangles are Congruent)	
9) $\overline{\mathrm{BD}} \stackrel{\sim}{=} \mathrm{BD}$	9) Reflexive Property	
10) $\overline{\mathrm{CD}} \cong \overline{\mathrm{FB}}$	10) Addition Property (If segment (BD) is added to congruent segments, then the sums are congruent)	

Statements	Reasons	
1) $\overline{\mathrm{AB}}=\overline{\mathrm{CD}}$	1) Given	
2) $\overline{\mathrm{BC}}=\overline{\mathrm{AD}}$	2) Given	
3) $\overline{\mathrm{AC}}=\overline{\mathrm{AC}}$	3) Reflexive Property	
4) $\triangle \mathrm{ABC}=\triangle \mathrm{CDA}$	4) SSS (Side-Side-Side)	
5) $\angle \mathrm{BAC}=\angle \mathrm{DCA}$	5) CPCTC (Corresponding Parts of Congruent Triangles are Congruent)	
6) $\overline{\mathrm{AB}} \\| \overline{\mathrm{CD}}$	6) If alternate interior angles are congruent,	
then the lines are parallel		

Note: angles DAC and BCA are irrelevant, because they would prove $\mathrm{BC} \| \mathrm{AD}$

1) In each group, identify the transversal. Then, describe the angle pairs.

SOLUTIONS

 transversal l
2) Is d parallel to f ?

$$
\begin{aligned}
4 \mathrm{x}-4 & +3 \mathrm{x}+16=180 \quad \text { (supplementary angles) } \\
x & =24
\end{aligned}
$$

since x must be 24 , angles are 92,88 , and 92

$$
\text { corresponding angles congruent.... } \mathrm{d} \| \mathrm{f}
$$

Thanks for visiting. (Hope it helped!)
If you have questions, suggestions, or requests, let us know.
Cheers.

ONE MORE.....
Which letters in the alphabet illustrate congruent corresponding angles?
Supplementary same side interior angles?
Congruent alternate interior angles?

Parallel Lines, Transversals, and the Alphabet

Consider the alphabet:
Which letters illustrate congruent alternate interior angles?
Which letters demonstrate same-side interior angles are supplementary?
Which letters have congruent corresponding angles?
(Depending on the font, upper \& lower case, and other factors,) here are some possibilities:

Congruent Alternate Interior:

Same-Side interior (supplementary):
E F H I

Congruent Corresponding:
E

And, of course, the letter with vertical angles:

SOLUTION $-\rightarrow$

Answer: Since $\overline{\mathrm{AB}}=\overline{\mathrm{EB}}$, angles 1 and 5 are also congruent. (if 2 congruent sides in triangle, then opposite angles are congruent)
$1+5+2=180^{\circ} \quad$ (angle sum of triangle)
$1+5+38^{\circ}=180^{\circ}$
Angles 1 and 5 must be 71° each
Since $\mathrm{AE} \| \mathrm{BD}$, angles 1 and 4 are congruent. (if parallel lines cut by transversal, corresponding angles are congruent)
$2+3+4=180^{\circ} \quad$ (3 adjacent angles form a straight angle -180 degrees)

$$
38^{\circ}+3+7.1^{\circ}=180^{\circ}
$$

$$
3=71^{\circ}
$$

