Trigonometry: Law of Sines and Cosines III

Notes, Examples, and practice questions (with solutions)

Find the other angles and sides...
Two solutions (ambiguous case)
If $\overline{\mathrm{AB}}$ is largest side $\square 43^{\circ} 38^{\circ} 99^{\circ} \quad$ 20-18-28.9 obtuse triangle

$$
\frac{18}{\sin 38}=\frac{20}{\sin (A)} \quad \text { angle } A=43^{\circ} \quad \text { approximately }
$$

If $\overline{\mathrm{AB}}$ is smallest side $\square 137^{\circ} 38^{\circ} 5^{\circ}$ 20-18-2.6 obtuse triangle

$$
\text { angle } A=43^{\circ} \Rightarrow \text { supplement is } 137^{\circ}
$$

Example: Find X :

Method 1: using law of cosines

$$
\begin{aligned}
10^{2}= & x^{2}+15^{2}-2(x)(15) \cos 35 \\
0= & x^{2}+125-(30 x) \cos 35 \\
\quad & \text { (quadratic) }
\end{aligned}
$$

Method 2: using law of sines (and ambiguous case)

$$
\begin{array}{rlll}
\frac{10}{\sin 35}=\frac{15}{\sin \mathrm{~A}}
\end{array} \quad \begin{aligned}
\text { angle } \mathrm{A}=59 \text { degrees (approximately) } & \text { Triangle 1: } 59^{\circ} 35^{\circ} 86^{\circ}
\end{aligned} \begin{aligned}
& \text { sides are 15-10-17.4 } \\
& \quad(\text { and, supplement is } 121 \text { degrees) }
\end{aligned} \begin{array}{ll}
\text { Triangle 2: } 121^{\circ} 35^{\circ} & 24^{\circ}
\end{array} \text { sides are 15-10-7.2}
$$

Example: Find the measures of the 3 angles.

Using Law of Cosines
$8^{2}=5^{2}+6^{2}-2(5)(6) \cos \mathrm{A}$
$6^{2}=5^{2}+8^{2}+2(5)(8) \cos \mathrm{C}$
$3=-60 \cos \mathrm{~A}$
$\mathrm{A}=92.87^{\circ}$
$-53=-80 \cos C$

$$
\mathrm{C}=48.5^{\circ}
$$

$180-92.87-48.5=38.63^{\circ}$ is angle B

Example: Solve the triangle.

$6^{2}=9^{2}+b^{2}-2(9)(b)(\cos 38)$
$36=81+\mathrm{b}^{2}-14.1842 \mathrm{~b}$
$b^{2}-14.1842 b+45=0$
quadratic formula; 2 solutions

$$
\mathrm{b}=4.79 \text { or } 9.39
$$

Note: This is "angle-side-side", so it's the 'ambiguous case'...

If $b=9.39$
it's an acute triangle

$9^{2}=9.39^{2}+6^{2}-2(9.39)(6)(\cos C)$
$81=124.172-112.68(\cos C)$
$\cos \mathrm{C}=.383138$
ngle $C=67.47$ degrees....

supplements!

$$
\sim-2
$$

$$
\text { and, Angle } B=180-67.47-38=74.53^{\circ}
$$

$9^{2}=4.79^{2}+6^{2}-2(4.79)(6)(\cos \mathrm{C})$
$81=58.944-57.48(\cos C)$

If $\mathrm{b}=4.79$,
it's an obtuse triangle

Example: A golf green lies 450 yards S 10 W from the tee. A golfer slices his shot, driving the ball 220 yards S40W

How far and in what direction should the 2nd shot be?
Using law of cosines: $d^{2}=220^{2}+450^{2}-2(220)(450) \cos 30$ (to get distance)

$$
\mathrm{d}=281.83
$$

1) The parallelogram has side lengths 9 and 13 .

2) A surveyor stands atop a 2400 foot mountain...

He can look down at an angle of depression of 40 degrees and see Base Camp 1.
If the surveyor swivels 66 degrees to his left,
he can look down at an angle of depression of 56 degrees and see Base Camp 2.
What is the approximate distance between Base Camps 1 and 2?

3) Can you find the length of $\overline{A B}$?

4) Given: Angle $\mathrm{A}=40$ degrees
side $\mathrm{a}=10$
side $\mathrm{b}=15$

In the following 'ambiguous case', find the length of x
a) using law of sines
b) using law of cosines
5) The diagram depicts a boat on the surface of the sea,

What is the distance between the submarines?

6) A surveyor is standing across a (blue) river, facing (brown) cliffs.. Taking 2 measurements from spots 200 yards apart, he finds the measures are 68 degrees and 57 degrees to a specific point across the river.
If the angle of elevation from the surveyor to the top of the cliffs is 33 degrees, then what is the approximate height of the cliffs?

8) Find the missing angles and sides of $\triangle A B C$ using

SOLUTIONS- -

1) The parallelogram has side lengths 9 and 13 .

If one diagonal is 16 , what is the other diagonal?

use law of sines/cosines to find angles...

Note: we know that consecutive angles in a parallelogram are supplementary...

then, use law of cosines to find diagonal...

$$
d^{2}=9^{2}+13^{2}-2(9)(13) \cos (88.5)
$$

$$
\mathrm{d}=15.6 \quad \text { (approx.) }
$$

2) A surveyor stands atop a 2400 foot mountain...

He can look down at an angle of depression of 40 degrees and see Base Camp 1.
If the surveyor swivels 66 degrees to his left,
he can look down at an angle of depression of 56 degrees and see Base Camp 2.
What is the approximate distance between Base Camps 1 and 2?

First, find the distances from the surveyor to each base camp:
$\sin \left(40^{\circ}\right)=\frac{2400 \text { feet }}{\text { distance to camp 1 }} \quad$ distance is approx. 3733.7 feet
$\sin \left(56^{\circ}\right)=\frac{2400 \text { feet }}{\text { distance to camp 1 }} \quad$ distance is approx. 2894.9 feet
Then, using law of cosines, we can find
the distance between the camps!
$\binom{\text { distance }}{\text { between camps }}^{2}=(3733.7)^{2}+(2894.9)^{2}-2(3733.7)(2894.9) \cos \left(66^{\circ}\right)$
distance between camps is approximately 3678 feet

Step 1: Using Law of Sines and $\triangle \mathrm{ACD}$
find $\overline{\mathrm{AD}}$

$$
\begin{aligned}
& \frac{\sin (85)}{30}=\frac{\sin (65)}{\mathrm{AD}} \\
& \overline{\mathrm{AD}}=27.3 \text { approx. }
\end{aligned}
$$

Step 2: Using Law of Sines and $\triangle B D C$ find $B D$

$$
\frac{\sin (80)}{30}=\frac{\sin (20)}{\mathrm{BD}}
$$

$B D=10.4$ approx.

Step 3: Using Law of Cosines and $\triangle \mathrm{ABD}$
find $A B$

$$
\overline{\mathrm{AB}}^{2}=(10.4)^{2}+(27.3)^{2}-2(10.4)(27.3) \cos \left(50^{\circ}\right)
$$

$\mathrm{AB}=22.1$ approximately

4) Given: Angle $\mathrm{A}=40$ degrees
side $\mathrm{a}=10$
side $\mathrm{b}=15$

In the following 'ambiguous case', find the length of x

a) using law of sines

b) using law of cosines

Method 1: Using law of sines..

$$
\begin{array}{r}
\text { If } B=74.61^{\circ}, \\
X=65.39^{\circ} \quad \frac{\sin (40)}{10}=\frac{\sin (65.39)}{x} \\
x=14.14
\end{array}
$$

$B=74.61^{\circ}$ or 105.39°

$$
\text { If } \mathrm{B}=105.39^{\circ} \text {, }
$$ $\mathrm{X}=34.61^{\circ}$

$$
\frac{\sin (40)}{10}=\frac{\sin (34.61)}{x}
$$

$\mathrm{x}=8.84$
5) The diagram depicts a boat on the surface of the sea, and 2 submarines below the water level.

Using Law of Sines
$\frac{\sin (8.5)}{\mathrm{d}}=\frac{\sin (153.333)}{5230}$

$$
d=1722 \text { feet (approx.) }
$$

6) A surveyor is standing across a (blue) river, facing (brown) cliffs.. Taking 2 measurements from spots 200 yards apart, he finds the measures are 68 degrees and 57 degrees to a specific point across the river.
If the angle of elevation from the surveyor to the top of the cliffs is 33 degrees, then what is the approximate height of the cliffs?

Step 1: use law of sines to get the base of the triangle...

$$
\begin{array}{r}
\frac{\sin (55)}{200}=\frac{\sin (57)}{d} \\
d=204.8
\end{array}
$$

Step 2: Using trig ratios, find the height of the cliffs..

$$
\begin{aligned}
& \tan (33)=\frac{\text { height }}{204.8} \\
& \text { height }=133 \text { yards (approx.) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { If we had used law of cosines: } \\
& \mathrm{m}^{2}=7^{2}+10^{2}-2(7)(10) \cos \left(50^{\circ}\right) \\
& \mathrm{m}^{2}=149-140(.6428) \quad \mathrm{m}=7.68
\end{aligned}
$$

proportion $1 \quad \frac{\sin (50)}{\mathrm{m}}=\frac{\sin (\mathrm{x})}{10} \quad \mathrm{~m}=\frac{10 \sin (50)}{\sin (\mathrm{x})}$
proportion $2 \frac{\sin (50)}{\mathrm{m}}=\frac{\sin (130-\mathrm{x})}{7} \nRightarrow \mathrm{~m}=\frac{7 \sin (50)}{\sin (130-\mathrm{x})}$
using substitution $\frac{10 \sin (50)}{\sin (x)}=\frac{7 \sin (50)}{\sin (130-x)}$
$\frac{7.66}{\sin (x)}=\frac{5.36}{\sin (130-x)}$

$\frac{7.66}{\sin (x)}=\frac{5.36}{\sin 130 \cos x-\cos 130 \sin x} \quad$| applying difference |
| :--- |
| formula |

$\frac{7.66}{\sin (x)}=\frac{5.36}{.766 \cos x+.643 \sin x}$
cross multiply $\quad 5.36 \sin (\mathrm{x})=5.87 \cos (\mathrm{x})+4.93 \sin (\mathrm{x})$
$.43 \sin (x)=5.87 \cos (x)$
trig quotient identity $\quad \tan (x)=13.65$

$$
\tan (x)=13.65
$$

formula

$$
\begin{aligned}
& \angle \mathrm{H}=85.8 \\
& \angle \mathrm{C}=44.2
\end{aligned}
$$

$$
\mathrm{m}=7.68
$$

8) Find the missing angles and sides of $\triangle A B C$ using
a) Law of Cosines (only)

b) Law of Sines (only)
a) Using Law of Cosines

$$
18^{2}=c^{2}+14^{2}-2(14)(c) \operatorname{Cos}\left(32^{\circ}\right)
$$

$$
128=c^{2}-23.75 c
$$

$$
c^{2}-23.75 c-128=0 \quad \text { quadratic equation }
$$

$$
\mathrm{c}=-4.5 \text { or } 28.28 \quad \begin{aligned}
& \text { since sides much be greater than } \\
& \text { zero, side } \mathrm{c} \text { is } 28.28
\end{aligned}
$$

$$
28.28^{2}=14^{2}+18^{2}-2(14)(18) \cos (\mathrm{C})
$$

$$
279.76=-504 \operatorname{Cos}(\mathrm{C})
$$

$$
\mathrm{C}=123.7^{\circ}
$$

b) Using Law of Sines Side - Side - Angle (ambiguous case of sines)

$$
\frac{\sin (32)}{18}=\frac{\sin (\mathrm{A})}{14}
$$

$$
\sin (A)=\frac{14 \sin (32)}{18} \quad \begin{aligned}
& \text { since this is an ambiguous case, } \\
& \text { we'll check the other possibility... }
\end{aligned}
$$ we'll check the other possibility... Supplement of 24.34 is $155.66 \ldots$ However, since $155+32>180$, there is only 1 triangle...

then, we know angle C is 123.66°

$$
\frac{\sin (123.66)}{c}=\frac{\sin (32)}{18} \quad \text { and, the other side is } 28.27
$$

$$
14^{2}=28.28^{2}+18^{2}-2(28.28)(18) \operatorname{Cos}(\mathrm{A})
$$

$$
-927.758=-1018.08 \operatorname{Cos}(\mathrm{~A})
$$

$$
\mathrm{A}=24.3^{\circ}
$$

Thanks for visiting. (Hope it helped!)
If you have questions, suggestions, or requests, let us know.
Cheers

Find the mathplane stores at TES and TeachersPayTeachers. Also, at mathplane.ORG

