Coordinate Geometry 1

Notes and practice test (w/solutions)

Topics include quadrants, ordered pairs, slope, distance, midpoint, quadrilaterals, Pythagorean Theorem, and more...

Coordinate Geometry Topics and Notes
I. Coordinate Plane (or Cartesian Plane -- named after mathematician Rene Descarte)

- x-axis and y-axis are perpendicular

$$
(\mathrm{x}, \mathrm{y})
$$

- "Left" of y-axis is negative
"Right" of y-axis is positive
("left" is negative "right" is positive)

(x. y)

- "Above" the x-axis is positive
"Below" the x-axis is negative
("up" is positive "down" is negative)
- Each point is an "ordered pair"
- Origin is $(0,0)$

The first term in the ordered pair is the x value.
(horizontal movement from the origin)
The second term in the ordered pair is the y value.
(vertical movement from the origin)
II. Slope

$$
\begin{aligned}
\text { Slope } m=\frac{\text { "rise" }}{\text { "run" }} & =\frac{\text { vertical change }}{\text { horizontal change }} \\
& =\frac{\mathrm{y}_{1}-\mathrm{y}_{2}}{\mathrm{x}_{1}-\mathrm{x}_{2}}
\end{aligned}
$$

Examples:

$$
\begin{aligned}
& \mathrm{B}=(4,3) \quad \mathrm{C}=(-2,-2) \\
& \text { Slope of } \overline{\mathrm{BC}}=\frac{3-(-2)}{4-(-2)}=\frac{5}{6} \quad \begin{array}{l}
\text { ("positive slope } \\
\text { goes upward) }
\end{array} \\
& \mathrm{A}=(-2,6) \quad \mathrm{B}=(4,3) \\
& \text { Slope of } \overline{\mathrm{AB}}=\frac{6-3}{-2-4}=\frac{-1}{2} \quad \begin{array}{c}
\text { ("negative" slope } \\
\text { goes downward) }
\end{array}
\end{aligned}
$$

Also, slope of $\overline{\mathrm{AC}}=\frac{6-(-2)}{-2-(-2)}=\frac{8}{0} \quad$ Undefined!

Vertical lines have undefined slope.
Horizontal lines have 0 slope.

Coordinate Geometry Topics and Notes

III. Linear Equations (Review)

Slope Intercept Form
$\mathrm{y}=m \mathrm{x}+\mathrm{b}$
slope $\quad \mathrm{y}$-intercept

Point Slope Form

Standard Form

$$
A x+B y=C
$$

where A, B, and C are integers...

note: the y-intercept b is not the same as the B coefficient of y

Horizontal line (form): $\mathrm{y}=\mathrm{b}$
Vertical line (form): $\mathrm{x}=\mathrm{a}$

Using Algebra to verify equivalent linear forms:

$$
\begin{array}{rlr}
m=\frac{\mathrm{y}_{1}-\mathrm{y}_{2}}{\mathrm{x}_{1}-\mathrm{x}_{2}} & \begin{array}{l}
\text { Begin with definition of } \\
\text { slope.... }
\end{array} \\
\frac{m}{1}=\frac{\mathrm{y}_{1}-\mathrm{y}_{2}}{\mathrm{x}_{1}-\mathrm{x}_{2}} & \text { cross multiply... } \\
\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right) & \text { *Point Slope Form! } \\
\mathrm{y}-\mathrm{b} & =\mathrm{m}(\mathrm{x}-0) & \text { substitute } \mathrm{y} \text {-intercept }(0, \mathrm{~b}) \\
\mathrm{y} & =\mathrm{mx}+\mathrm{b} & \text { *Slope Intercept Form! }
\end{array}
$$

Important
Parallel lines have the same slope
Perpendicular lines have negative reciprocal slopes

Examples:

2) Is $2 x+3 y=6$ parallel to $y=\frac{-2}{3} x+14$?

$$
\begin{aligned}
& y=\frac{-2}{3} x+14 \quad \begin{array}{l}
\text { slope intercept form; } \\
\text { slope }=-2 / 3
\end{array} \\
& \begin{aligned}
& 2 x+3 y=6 \quad \text { (change to intercept form) } \\
& 3 y=-2 x+6 \\
& y=\frac{-2}{3} x+3 \quad \begin{array}{l}
\text { slope intercept form; } \\
\text { slope }=-2 / 3
\end{array} \\
& \text { slopes are the same! parallel lines... }
\end{aligned}
\end{aligned}
$$

5) Write the equation of a vertical line passing through $(6,7)$.

6) What is the y-intercept of $4 x-3 y=12$? What is the x -intercept?

The y-intercept is the point where the line crosses the y-axis.. Its coordinate is $(0, b)$

$$
\begin{array}{rlrl}
4(0)-3(\mathrm{~b}) & =12 & & \text { (substitute }(0, \mathrm{~b}) \\
-3 \mathrm{~b} & =12 & & \text { into the equation) } \\
\mathrm{b} & =-4 & (0,-4)
\end{array}
$$

The x -intercept is the point where a
line crosses the x -axis..
Its coordinate is $(?, 0) \quad$ (substitute $(?, 0)$

$$
\begin{aligned}
4(?)+3(0) & =12 & & \text { into } \\
4(?) & =12 & & (3,0)
\end{aligned}
$$

6) Write the equation of a line perpendicular to $y=3 x+5$ and passing through $(2,4)$

The slope of the given line is $3 \ldots$ therefore, the slope of a perpendicular line is $-1 / 3$

So, a line with slope $-1 / 3$ passing through (2, 4):

$$
y-4=-1 / 3(x-2) \quad(p t . \text { slope form })
$$

IV: Midpoint
The "half-way point between two locations".
It is equidistant to each point.
The midpoint is similar to the "average"

$$
\frac{P_{1}+P_{2}}{2}=\text { Midpoint }
$$

The midpoint extends to the Cartesian Plane:
Simply find the midpoint of the X values. And, the midpoint of the Y values.

The midpoint of the X Values: $\frac{1+5}{2}=3$
$\left(\frac{\mathrm{X}_{1}+\mathrm{X}_{2}}{2}, \frac{\mathrm{Y}_{1}+\mathrm{Y}_{2}}{2}\right)$
Midpoint Formula

Examples:

Where does the perpendicular bisector pass through $\overline{\mathrm{RS}}$?

Find the midpoint of $\overline{\mathrm{RS}}$:
X coordinate: $\frac{3 / 2+4}{2}=\frac{11 / 2}{2}=\frac{11}{4}$
Y coordinate: $\frac{1+3}{2}=2$

Given AB with midpoint M : $\mathrm{A}=(-3,1) \quad \mathrm{M}=(1,3) \quad$ What is B ?
"Formula" Method

$$
\begin{array}{ll}
\frac{\mathrm{X}_{\mathrm{A}}+\mathrm{X}_{\mathrm{B}}}{2}=\mathrm{X}_{\mathrm{M}} & \frac{\mathrm{Y}_{\mathrm{A}}+\mathrm{Y}_{\mathrm{B}}}{2}=\mathrm{Y}_{\mathrm{M}} \\
\frac{-3+\mathrm{X}_{\mathrm{B}}}{2}=1 & \frac{1+\mathrm{Y}_{\mathrm{B}}}{2}=3 \\
\mathrm{X}_{\mathrm{B}}=5 & (5,5) \\
& \mathrm{Y}_{\mathrm{B}}=5
\end{array}
$$

"Travel" Method
Start at the endpoint. Determine how far you "travel" to the midpoint. Then, add the same amount.

$$
\begin{gathered}
\text { A } \\
(-3,1)
\end{gathered} \begin{gathered}
\text { M } \\
(1,3)
\end{gathered}
$$

X value increased 4 units.
Y value increased 2 units..
M B
$(1,3) \longrightarrow(1+4,3+2)$
$(5,5)$
V. Distance

The space between 2 points.
The length of the line segment connecting two points.

Cartesian Plane:

The distance between D and E is 3 units...
$(3,2),(4,2),(5,2)$, and $(6,2)$ And, the distance between E and F is 4 units... $(6,2),(6,3),(6,4),(6,5),(6,6)$

So, what is the distance between D and F ?
(And, it is not $7!!$)

Pythagorean Theorem

$$
a^{2}+b^{2}=c^{2}
$$

Notice, in this case, that the points can be vertices of a right triangle..

So, $\overline{\mathrm{DE}}^{2}+\overline{\mathrm{EF}}^{2}=\overline{\mathrm{DF}}^{2}$
$9+16=25$

Therefore, the length of $\overline{\mathrm{DF}}$ (i.e. distance between D and F) $=5$
$d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$

Distance Formula

Find the distance between $(-2,5)$ and $(4,7)$.

Using Distance Formula:

$$
d=\sqrt{(-2-4)^{2}+(5-7)^{2}}
$$

$$
=\sqrt{(-2-4)^{2}+(5-7)^{2}}
$$

$$
=\sqrt{36+4}=2 \sqrt{10}
$$

Using Pythagorean Theorem:

A vertical line drawn from $(4,7)$ intersects a horizontal line from $(-2,5)$ at $(4,5)$.. These form a right triangle!

Then, using the pythagorean theorem, the hypotenuse is $2 \sqrt{10}$

Examples:

Use coordinate geometry to prove the triangle is isosceles.

Def. of isosceles: triangle with 2 congruent sides.

$$
\begin{aligned}
\mathrm{a} & =\sqrt{(7-4)^{2}+(9-1)^{2}} \\
& =\sqrt{9+64}=\sqrt{73} \\
\mathrm{~b} & =\sqrt{(7-10)^{2}+(9-1)^{2}} \\
& =\sqrt{9+64}=\sqrt{73}
\end{aligned}
$$

$a=b$, therefore the triangle is isosceles...

Verify the length of $\overline{A B}$ equals the length of $\overline{B C}$

		Method 1: Using Midpoint	Method 2: Using Distance
$\mathrm{A}=(-2,2)$	\pm	Midpoint of $\overline{\mathrm{AC}}$	$\mathrm{d} \overline{\mathrm{AB}}=\sqrt{(-2-3.5)^{2}+(2-6)^{2}}$
$\mathrm{B}=(3.5,6)$		$\left(\frac{-2+9}{2}, \frac{2+10}{2}\right)$	$=\sqrt{30.25+16}=6.80$
$\mathrm{C}=(9,10)$		$(3.5,6)$	$\mathrm{d} \overline{\mathrm{BC}}=\sqrt{(3.5-9)^{2}+(6-10)^{2}}$
		since B is the midpoint of $\overline{\mathrm{AC}}, \quad \overline{\mathrm{AB}}=\overline{\mathrm{BC}}$	$\begin{aligned} & =\sqrt{30.25+16}=6.80 \\ & \mathrm{~d} \overline{\mathrm{AB}}=\mathrm{d} \overline{\mathrm{BC}} \end{aligned}$

Testing the limits of endurance, these math figures will run on and on...

PRACTICE TEST

Coordinate Geometry Test

Part I:
Identify the Quadrant or Axis of each point.
a) $(2,-3)$
b) $(-2,3)$
c) $(1,210)$
d) $(-21,-3.44)$
e) $(0,9)$
f) $(9,0)$

Part II:
$\mathrm{A}=(4,9)$
a) What is the Distance between A and B? Midpoint?
$B=(4,-3)$
$\mathrm{C}=(8,17)$
$\mathrm{D}=(\mathrm{x}, \mathrm{y})$
b) What is the length of $\overline{\mathrm{AC}}$? Midpoint of $\overline{\mathrm{AC}}$?
c) If C is the midpoint of $\overline{\mathrm{BD}}$, what are the coordinates of D ?
d) What is the slope of $\overline{\mathrm{BC}}$? $\overline{\mathrm{AB}}$? $\overline{\mathrm{BD}}$?

Part III: A rectangle has the following vertices: $(1,1)(7,1)(1,4)$
a) Where is the 4th vertex?
b) What is the perimeter of the rectangle?
c) What is the area of the rectangle?

Part IV: A parallelogram has the following vertices: A $(2,3) \quad \mathrm{B}(9,3) \quad \mathrm{C}(8,8)$
a) What is the 4th vertex of $\square \mathrm{ABCD}$?
b) What is the 4th vertex of $\square \mathrm{ADBC}$?

c) Assuming $\square \mathrm{ABCD}$, what is the perimeter? What is the area?

Part V: A triangle has the following vertices: $(-7,11)(9,4) \quad(1,-5)$
Using Heron's Formula, "Encasement", or any method you prefer, find the area of the triangle

Use a different method to confirm your answer.

Part VI: What are the missing coordinates?

Part VII: When C and D are horizontally shifted to the right, $\overline{\mathrm{AD}}$ and $\overline{\mathrm{BC}}$ increase 20%. By what percentage do the diagonals increase?

Name: Chloe Lapointe
"Mr. Descartes, how did I do?"
"Not very good, Miss LaPointe Can you see the source of your mistakes?"

Friedman \#60 (11-24-12)
www.mathplane.com
An ' F ' on the last quiz?...
.... Chloe didn't know wh(y).

SOLUTIONS

SOLUTIONS

Part I:
Identify the Quadrant or Axis of each point.
a) $(2,-3)$
b) $(-2,3)$
c) $(1,210)$
d) $(-21,-3.44)$
III

e) $(0,9)$	f) $(9,0)$
y-axis	x-axis

$\mathrm{A}=(4,9)$
$B=(4,-3)$
$\mathrm{C}=(8,17)$
$\mathrm{D}=(\mathrm{x}, \mathrm{y})$
a) What is the Distance between A and B? Midpoint?
distance $=12$ units midpoint: $(4,3)$
b) What is the length of $\overline{\mathrm{AC}}$? Midpoint of $\overline{\mathrm{AC}}$?
$\dot{D}^{(12,37)}$
$\begin{aligned} & \text { Use distance formula } \\ & \text { to find length of } \overline{\mathrm{AC}}:\end{aligned} \sqrt{(8-4)^{2}+(17-9)^{2}}=\sqrt{80} \quad$ Midpoint: $\left(\frac{4+8}{2}, \frac{9+17}{2}\right)$

$$
=4 \sqrt{5} \quad=(6,13)
$$

c) If C is the midpoint of $\overline{\mathrm{BD}}$, what are the coordinates of D ?

From B to C: x goes from 4 to $8 \quad(+4)$
y goes from -3 to $17 \quad(+20) \quad D=(12,37)$
From C to D: $\mathrm{x}(+4)$ goes from 8 to 12
$y(+20)$ goes from 17 to 37
d) What is the slope of $\overline{\mathrm{BC}}$? $\overline{\mathrm{AB}}$? $\overline{\mathrm{BD}}$?
slope $\mathrm{m}=\frac{\mathrm{y}_{1}-\mathrm{y}_{2}}{\mathrm{x}_{1}-\mathrm{x}_{2}} \quad \overline{\mathrm{BC}}=\frac{-3-17}{4-8}=5 \quad \overline{\mathrm{AB}}$ is undefined ("no slope")

$$
\mathrm{m}=\frac{\text { "rise" }}{\text { "run" }} \quad \text { slope of } \overline{\mathrm{BD}} \text { is also } 5
$$

Part III: A rectangle has the following vertices: $(1,1)(7,1)(1,4)$
a) Where is the 4th vertex?

$$
(7,4) \text { is the } 4 \text { th vertex }
$$

b) What is the perimeter of the rectangle?
length: 6 units width: 3 units perimeter: 18 units
c) What is the area of the rectangle?
area $=$ length x width
area $=18$ square units

Coordinate Geometry Test (Continued)

SOLUTIONS

Part IV: A parallelogram has the following vertices: $\quad \mathrm{A}(2,3) \quad \mathrm{B}(9,3) \quad \mathrm{C}(8,8)$
a) What is the 4th vertex of $\square \mathrm{ABCD}$?

Since base $\overline{\mathrm{AB}}$ is horizontal and 7 units long, the top of the parallelogram must be horizontal and 7 units long. Therefore, the 4th vertex is $(1,8)$

b) What is the 4th vertex of $\square \mathrm{ADBC}$?

> Since C $--\gg$ B is 1 unit to the right and 5 units down,
> A $-->$ vertex 4 will be 1 unit to the right and 5 units down: $\quad(3,-2)$
c) Assuming $\square \mathrm{ABCD}$, what is the perimeter? What is the area?
measure of $\overline{\mathrm{AB}}=7$ units... (distance formula) measure of $\overline{\mathrm{BC}}=\sqrt{26}$

$$
\begin{aligned}
& \quad \text { and } \overline{\mathrm{CD}}=7 \text { units. } \quad \sqrt{(9-8)^{2}+(3-8)^{2}}=\sqrt{26} \\
& \text { and } \overline{\mathrm{DA}}=\sqrt{26} \\
& \begin{array}{l}
\text { height }=5 \text { units } \\
\text { base }=7 \text { units }
\end{array} \quad \begin{array}{l}
\text { Area }=\mathrm{bh}=35 \text { sq. units } \\
\text { perimeter }=21+2 \mathrm{w}=14+2 \sqrt{26} \cong 24.2 \text { units }
\end{array}
\end{aligned}
$$

Note: For parallelogram ADBC Perimeter $\xlongequal{\cong} 25.8$ units Area $=35$ sq units

Part V: A triangle has the following vertices: $(-7,11)(9,4) \quad(1,-5)$
Using Heron's Formula, "Encasement", or any method you prefer, find the area of the triangle

1) Using Heron's Formula: Area $=\sqrt{s(s-a)(s-b)(s-c)} \quad$ where $s=\frac{a+b+c}{2}$

$$
\begin{aligned}
& \mathrm{a}=\sqrt{16^{2}+(-7)^{2}}=\sqrt{305} \stackrel{\bumpeq}{=} 17.46 \\
& \mathrm{~b}=\sqrt{8^{2}+9^{2}}=\sqrt{145} \xlongequal{\cong} 12.04 \\
& \mathrm{c}=\sqrt{8^{2}+(-16)^{2}}=\sqrt{320} \cong 17.89 \\
& \mathrm{~s} \cong \frac{47.39}{2} \xlongequal{\cong} 23.69 \\
& \mathrm{~A} \cong \sqrt{23.69(23.69-17.46)(23.69-12.04)(23.69-17.89)} \\
& \cong \sqrt{23.69(6.23)(11.65)(5.8)} \cong 99.86 \text { square units }
\end{aligned}
$$

Use a different method to confirm your answer.

2) "Encasement" ('Encase' the triangle with a rectangle; find the area of surrounding right triangles.. Then, subtract area of right triangles from rectangle)

Area of rectangle: $1 \times \mathrm{w}=16 \times 16=256$	256
Area of I : $1 / 2 \mathrm{bh}=1 / 2(8)(16)=64$	-64
Area of II: $1 / 2 \mathrm{bh}=1 / 2(16)(7)=56$	-56
$1 / 2 \mathrm{bh}=1 / 2(8)(9)=36$	100 (inner triangle) square units

3) Area of a Triangle: $1 / 2 \mathrm{bh}$
(use distance formula to find base)

$$
\triangle_{\text {base }}=\sqrt{(-7-1)+(11-(-5))}=\sqrt{320} \cong 17.89
$$

(to find the height, we need to find the distance from $(9,4)$ to H)
slope of line through $(-7,11)$ and $(1,-5)$ is $\frac{11-(-5)}{-7-1}=-2$ Since the height is perpendicular to the base, its slope is $\frac{1}{2}$
Therefore, equation of a line through H and $(9,4)$ is $y=m x+b$
$4=1 / 2(9)+b$
$\mathrm{b}=-1 / 2$

And, equation of base is

$$
y=\frac{1}{2} x-\frac{1}{2}
$$

(set equations equal to each other to find intersection H)
$y=m x+b$
$\begin{aligned} & 11=-2(-7)+b \\ & b=-3\end{aligned} \quad y=-2 x-3$

$$
\frac{1}{2} x-\frac{1}{2}=-2 x-3
$$

$$
x-1=-4 x-6
$$

$$
5 x=-5
$$

$$
x=-1 \quad y=-1
$$

Height is distance from $(-1,-1)$ to $(9,4)$

$$
\begin{aligned}
& \sqrt{(-1-9)^{2}+(-1-4)^{2}} \\
& \sqrt{100+25} \cong 11.18
\end{aligned}
$$

Part VI: What are the missing coordinates?

SOLUTIONS

Part VII: When C and D are horizontally shifted to the right, $\overline{\mathrm{AD}}$ and $\overline{\mathrm{BC}}$ increase 20%. By what percentage do the diagonals increase?

To increase the lengths by 20%, they must go from 10 to $12 \ldots$

The new rectangle has vertices $(0,0)(0,10)(12,10)(12,0)$

Pythagorean Theorem (or 45-45-90 right triangle)
diagonal $=10 \sqrt{2}=14.14$

diagonal $=\sqrt{100+144}=15.62$
diagonals increased by approximately 10.5%

1) Right Triangle (-12,7)	2) Isosceles Triangle $\begin{aligned} \text { Area } & =\frac{1}{2}(\text { base })(\text { height }) \\ & =\frac{1}{2}(4)(10) \\ & =20 \end{aligned}$
3) Parallelogram (opposite sides congruent)	4) Isosceles Trapezoid
5) Rectangle	6) Square
7) Rhombus	8) Parallelogram $\begin{aligned} \text { Area } & =(\text { base })(\text { height }) \\ & =(7)(3) \\ & =21 \text { sq. units } \end{aligned}$

Thanks for visiting. (Hope it helped!)
If you have questions, suggestions, or requests, let us know.
Cheers

Also, at Mathplane Express for mobile and tablets at mathplane.ORG

One more question:
The following are 3 vertices of a parallelogram:
$L(1,6) \quad M(8,6) \quad P(3,3)$
What is the coordinate(s) of the 4th vertex?
Answer on the next page -- \rightarrow

Coordinate Geometry

The following are the vertices of a parallelogram: $\mathrm{L}(1,6) \mathrm{M}(8,6)$ and $\mathrm{P}(3,3)$.
What is the 4th vertex?
Definition of a parallelogram: "Quadrilateral where opposite sides are parallel"
(also, opposite sides are congruent)
Since the parallelogram is not specified, there are 3 possiblities!

Assume the 4th vertex is Q :
Solution \#1: $\quad \overline{\mathrm{LM}}$ is a horizontal segment of length 7.
So, $\overline{\mathrm{PQ}}$ is a horizontal segment of length 7.
$\triangle 1 \mathrm{LMQP}$
Q is $(10,3)$

Solution \#2: $\quad \overline{\mathrm{LM}}$ is a horizontal segment of length 7.
$\square 1 \mathrm{LMPQ}$ so, $\overline{\mathrm{QP}}$ is a horizontal segment of length 7.
("in the other direction")
Q is $(-4,3)$

Solution \#3: $\quad \overline{\mathrm{PM}}$ is a segment with slope $\frac{3}{5} \quad \frac{\text { "rise" }}{\text { "run" }}$ $\square \mathrm{LQMP} \quad$ and length $\sqrt{34}$

Therefore, the opposite side (LQ) must have the same slope and length...
*** Starting at $(1,6)--$ go up 3 and to the right 5

$$
\mathrm{Q} \text { is }(6,9)
$$

LQMP is also a rectangle..

