Trigonometry: Arc Length and Sector Area

Includes formulas, examples, illustrations, and quick quiz (w/solutions)

Example: Find the arc length $\widehat{\mathrm{AB}}$

Since the radius is 5 , the circumference of the whole circle is

$$
2 \Pi(5)=10 \Pi
$$

$\operatorname{Arc} A B$ is $\frac{120^{\circ}}{360^{\circ}}=\frac{1}{3}$ of the circumference

Therefore, $\widehat{\mathrm{AB}}=\frac{1}{3}$ of $10 \Pi \longrightarrow \frac{10 \uparrow}{3}$
(converting radians/degrees)
2π (radians) $=360^{\circ}$ so, if we use substitution in the above formula:

$$
\begin{aligned}
& \text { Arc Length }=(2 \pi \mathrm{r}) \frac{\text { (measure of central angle) }}{360^{\circ}} \\
& \text { and cancel the } 2 \pi \pi^{\prime} \mathrm{s} \quad=(2 \pi r) \frac{\text { (measure of central angle) }}{2 \pi \text {-(radians) }}=r \text { (central angle) }
\end{aligned}
$$

Arc Length (using radian measure)
Arc Length $=\mathrm{r} \ominus$ radius of radian measure
the circle of the arc

Quick check: $\frac{T^{\prime \prime}}{3}=60$ degrees 60 degrees is $1 / 6$ of the entire circle circumference of circle $=16 \mathrm{~T}$ therefore, arc length is $(1 / 6)$ of $16 \pi \rightarrow \frac{8 \pi}{3}$

Example: Find the arc length of the $\overparen{\mathrm{CD}}$

Since the radius $(r)=8$ and

$$
\ominus=\frac{\pi}{3}
$$

the arc length of $C D$
is
$\frac{8-\pi}{3}$
8.38 units

Sector Area (using degrees)

Example: Find the sector area (shaded region)

Since the radius is 12 units, the area of the entire circle is

$$
\Pi(12 \text { units })^{2}=144 \Pi \text { sq. units }
$$

Then, $\frac{72^{\circ}}{360^{\circ}}=\frac{1}{5}$ so, the "piece is $1 / 5$ of the pie"

$$
\frac{1}{5} \cdot 144 \uparrow \text { sq. units }=\frac{144 \uparrow}{5} \text { sq. units }
$$

(converting radians/degrees)
2π (radians) $=360^{\circ}$ so, if we use substitution in the above formula:

$$
\begin{aligned}
\text { Sector Area } & =\pi \mathrm{r}^{2} \frac{\text { (measure of central angle) }}{360^{\circ}} \\
\text { and cancel the } \pi^{\prime} \mathrm{s} & =\pi \mathrm{r}^{2} \frac{\text { (measure of central angle) }}{2 \not \uparrow \text { (radians) }}=\frac{\mathrm{r}^{2} \text { (central angle) }}{2}
\end{aligned}
$$

Sector Area Trigonometry

Example Find the shaded area. Then, find the perimeter of the shaded boundary.

sector area of circle: $\frac{\ominus}{360^{\circ}} \pi \mathrm{r}^{2}$
arc length in a circle: $\frac{\ominus}{360^{\circ}}(2 \Pi \mathrm{Tr})$
area of triangle: $1 / 2$ (base)(height)

sector area of circle: $\quad \frac{72^{\circ}}{360^{\circ}} \pi(10)^{2}=20 \pi$

$$
=62.8 \text { (approx.) }
$$

(all radii congruent and property of isosceles triangles)
shaded area $=$ sector area - triangle area

$$
=62.8-47.6=15.2 \text { square units }
$$

arc length in circle: $\frac{72^{\circ}}{360^{\circ}}(2 \Pi(10))=4 \pi$
The border of the shaded area is

$$
11.76+12.57=24.3 \text { units }
$$

Use trig functions to identify base and height

$$
\begin{array}{cc}
\sin \left(36^{\circ}\right)=\frac{x}{10} & \cos \left(36^{\circ}\right)=\frac{y}{10} \\
x=10 \cdot(.588)=5.88 & y=10 \cdot(.809)=8.09
\end{array}
$$

area of triangle $=\frac{1}{2}(11.76)(8.09)=47.6$

Angular and Linear Speed

Example: A pulley with a 15 " radius pulls 60 " of rope every 20 seconds. What is the angular speed in radians/seconds?
$\mathrm{r} \ominus=$ linear distance
$\left(15{ }^{\prime \prime}\right) \ominus=-60^{\prime \prime}$
$\ominus=4$ radians

so, the angular speed is 4 radians $/ 20$ seconds or .2 radians/second

Example: A skateboard cruises down a hill at 15 miles per hour.
If the diameter of each wheel is $2.3^{\prime \prime}$, what is the angular speed in radians/second?

$$
\mathrm{r} \ominus=\text { linear distance }
$$

$1.15^{\prime \prime} \ominus=\frac{15 \text { miles }}{1 \text { hour }}$ Convert the units:

$$
\frac{15 \text { miles }}{1 \text { hour }} \cdot \frac{1 \text { hour }}{3600 \text { seconds }} \cdot \frac{5280 \text { feet }}{1 \text { mile }} \cdot \frac{12 \text { inches }}{1 \text { foot }}=264 \frac{\text { inches }}{\text { second }}
$$

$$
1.15^{\prime \prime} \ominus=264 \frac{\text { inches }}{\text { second }}
$$

[^0]Example: A bicycle has wheels with diameter 27.6 inches.
The diagram shows the dimensions of the chain mechanism.
If the pedal turns 180 degrees, how far does the bicycle travel?
First, find the linear distance of the big gear. (i.e. the arc length)

```
        r}\ominus= linear distance
4.7"(-\Pi) = 14.765"
        |
    180 degrees
```

So, the chain moves 14.765 inches...
Then, find the angular distance of the small gear.
If the chain moves 14.765 inches,

$$
\begin{aligned}
1.4^{\prime \prime}(\ominus) & =14.765^{\prime \prime} \\
\ominus & =10.55 \text { radians.. }
\end{aligned}
$$

Finally, determine the distance the bike travels.
Since the diameter is 27.6 ",
13.8 inches (10.55 radians) $=145.5$ inches

Practice Quiz and Solutions $-\rightarrow$

Arc Length and Sector Area
I. Arc Length -- Evaluate the unknown variable:

II. Sector Area -- Find the shaded areas:

III. Miscellaneous Questions
a) Find the shaded area:

b) Find the perimeter of OPQ

c) A sprinkler rotates 150 degrees back and forth and sprays
water up to 20 feet.
How much of the lawn space can the sprinker cover with water?
d) A windshield wiper extents 130 degrees. (See diagram) What area of glass is cleared by the wiper?

e) Find the shaded area:

f) Find the shaded area and perimeter of the ("circular") figure:

g) The area of a circle is 58 square feet.

What is the circle's diameter?
h) Find the area and perimeter of shaded segments

i) Which pizza slice is a better deal?

I. Arc Length -- Evaluate the unknown variable:

formula for arc length: $\mathrm{s}=\mathrm{r} \ominus$

$$
\begin{aligned}
30 & =\mathrm{r} \frac{\uparrow T}{2} \\
30 & =1.57 \mathrm{r} \\
\mathrm{r} & \approx 19.1
\end{aligned}
$$

formula for arc length: $\frac{\ominus}{360^{\circ}} \cdot 2 \pi \mathrm{Tr}$

$$
\begin{gathered}
\frac{240}{360} \cdot 2 \Pi(6)=\mathrm{s} \\
\mathrm{~s}=8 \Pi \\
\mathrm{~s} \approx 25.2
\end{gathered}
$$

$\mathrm{s}=\mathrm{r} \ominus$

$$
24=12 \ominus
$$

$\theta=2$ radians
(not 2 degrees!)
2 radians is approximately 114 degrees

II. Sector Area -- Find the shaded areas:

Since the measure of the central angle is given in degrees, we'll use the following formula:

$$
\begin{aligned}
& \frac{\ominus}{360^{\circ}} \cdot \pi \mathrm{r}^{2} \\
& \frac{70^{\circ}}{360^{\circ}} \cdot \pi(10)^{2} \approx 61.1 \text { sq. units }
\end{aligned}
$$

III. Miscellaneous Questions

a) Find the shaded area:

sector area ("piece of the pie")

$$
\frac{120}{360} \pi \mathrm{r}^{2}=\frac{1}{3} \cdot 4 \pi \approx 4.2
$$

triangle area

(30-60-90 triangles)

$$
\text { area }=1 / 2 \text { (base }) \text { (height) }=1 / 2(2 / \sqrt{3})(1) \approx 1.73
$$

arc length of $\overparen{P Q}$
b) Find the perimeter of OPQ

$\mathrm{r} \ominus=8 \cdot \frac{\pi}{3}$
≈ 8.4
then, since
$\mathrm{PO}=8$
and $\mathrm{QO}=8$,
the perimeter is
approximately

Since the measure is expressed in radians, we'll use the following formula:

$$
\begin{gathered}
\frac{r^{2} \ominus}{2} \\
\frac{\left(7^{\prime \prime}\right)^{2} \cdot 2}{2}=49 \text { square inches }
\end{gathered}
$$

c) A sprinkler rotates 150 degrees back and forth and sprays water up to 20 feet.
How much of the lawn space can the sprinker cover with water?

d) A windshield wiper extents 130 degrees. (See diagram) What area of glass is cleared by the wiper?

e) Find the shaded area:

f) Find the shaded area and perimeter of the ("circular") figure:

SOLUTIONS
Arc Length and Sector Area

$$
\begin{aligned}
\text { Sector Area } & =\frac{\ominus}{360} \Pi \text { (radius) }^{2} \\
& =\frac{150}{360} \Pi\left(20^{\prime}\right)^{2} \\
& =166 \frac{2}{3} \Pi \text { square feet }
\end{aligned}
$$

Area of wiper blade $=$ sector area of "outer circle" - sector area of "inner circle"

"outer circle"radius $=19$ sector: 120 degrees	Area $=\frac{120}{360} \Pi(19)^{2}=\frac{361}{3} \Pi$
"inner circle"radius $=19-14=5$ sector: 120 degrees	Area $=\frac{120}{360} \Pi(5)^{2}=\frac{25}{3} \Pi$
Area covered by wiper blade$=112 \Pi T$	

Since a triangle inscribed in a semicircle is a right triangle, we know the diameter is 20 .. (radius is 10)

Area of entire circle: 100Π
Area of triangle: $\frac{1}{2}$ (base)(height) $=\frac{1}{2} \cdot 10 \sqrt{2} \cdot 10 \sqrt{2}=100$
Shaded area $=100 T-100$ (approximately 214 square units)

The area of the 'big semicircle' would be

$$
\frac{1}{2} T(6)^{2}=18 T
$$

Then, we have to cut out 2 'small semicircles' and add 1 'small semicircle'!!
area of each 'small semicircle' is $\frac{1}{2} \Pi(2)^{2}=2 \Pi T$
therefore, the shaded area is $\quad 18 \Pi-$ (2) $2 T+$ (1) $2 T=16 T$ square units

Therefore, the perimeter is 1 'big semicircle' and 3 'small semicircles'

$$
12 T \text { units }
$$

g) The area of a circle is 58 square feet. What is the circle's diameter?

$$
\begin{aligned}
\text { Area } & =\Pi \text { (radius) }^{2} \\
58 & =\Pi \text { (radius) }^{2}
\end{aligned}
$$

$$
\text { radius }=4.3 \text { (approximately) }
$$

$$
\text { Therefore, the diameter is } 8.6 \text { feet (approximately) }
$$

h) Find the area and perimeter of shaded segments

$$
\text { Arc length: } \frac{72}{360}(2 \pi \cdot 15)=6 \pi
$$

Use trig to find segment:

Perimeter $=6 \pi+17.64$

Sector Area: $\frac{72}{360} \Pi^{-}(15)^{2}=45 \Pi^{-}$
Then, subtract the triangle.

$$
\begin{array}{r}
\frac{1}{2}(17.64)(12.14)=107 \\
45 \Pi-107=34.4 \text { sq units }
\end{array}
$$

Arc length: $\frac{120}{360}(2 \pi \cdot 6)=4 \pi$

$$
\text { Perimeter }=4 \pi+6 \sqrt{3}
$$

$$
\text { approx } 23 \text { units }
$$

i) Which pizza slice is a better deal?

Sector Area: $\frac{120}{360} \Pi^{-}(6)^{2}=12 \Pi^{-}$ Then, subtract the triangle.

$$
\text { area }=\frac{1}{2} \mathrm{abSinC}
$$

$$
\begin{aligned}
\frac{1}{2}(6)(6) \sin \left(120^{\circ}\right)= & \frac{18 \sqrt{3}}{2} \\
12 \pi-9 \sqrt{3} & =\begin{array}{l}
22.1 \\
\text { sq units }
\end{array}
\end{aligned}
$$

We're seeking the lower price/area or higher area/price
sector area of 6 -inch slice: sector area of 7-inch slice:

$$
\begin{aligned}
& \frac{60}{360} \pi(6 \text { inches })^{2}=6 \pi \\
& \frac{1.50}{6-\pi}=.0796 / \mathrm{sq} \mathrm{inch}
\end{aligned}
$$

$$
\frac{45}{360} \pi{(7 \text { inches })^{2}=\frac{49}{8} \pi}_{\pi}^{T}
$$

$$
\frac{1.70}{6.125 \pi}=.0883 / \mathrm{sq} \mathrm{inch}
$$

12.566 sq inches/dollar
11.319 sq inches/dollar

One more Question:

A cow is tethered to a 100 -foot rope, attached to the inside corner of an L-shaped building (as shown in the diagram).

Find the grazing area of the cow.

A cow is tethered to a 100 -foot rope, attached to the inside corner of an L-shaped building (as shown in the diagram).

Find the grazing area of the cow.

Going Counterclockwise:

$$
\text { Sector Area }=\frac{\text { angle measure }}{360 \text { degrees }} \pi \mathrm{r}^{2}
$$

Going clockwise:

$$
\begin{aligned}
& \text { sector area: radius } 40^{\prime} \\
& \ominus=90 \text { degrees } \\
& \frac{90 \text { degrees }}{360 \text { degrees }} \Pi\left(40^{\prime}\right)^{2}=400 \pi \text { square feet }
\end{aligned}
$$

Thanks for visiting! (Hope it helped!)

If you have questions, suggestions, or requests, let us know.

Find more materials at the mathplane.org and mathplane.com sites.
Or, visit our store at TeachersPayTeachers.com

[^0]: 229.6 radians/second

