Angle Properties

Notes and Quick Quiz (\& Solutions)

I. A Straight Angle is 180°

II. Supplementary Angles add up to 180°
$\mathrm{m} \angle \mathrm{A}+\mathrm{m} \angle \mathrm{B}=180^{\circ}$

Example:

$$
\begin{aligned}
& \angle \mathrm{xyr} \text { and } \angle \mathrm{ryz} \text { are } \\
& \text { supplementary angles. }
\end{aligned}
$$

And, although they are not adjacent, $\angle \mathrm{S}$ and $\angle \mathrm{xyr}$ are supplementary as well.
III. Vertical Angles are congruent

$$
\angle \mathrm{R} \cong \angle \mathrm{~S} \quad \angle \mathrm{X} \cong \angle \mathrm{Y}
$$

Examples:

(sample notation for congruent angles)

A circle has 360°

It follows that the semi-circle is 180 degrees.

Angle Addition Postulate: If point P lies in the interior of $\angle \mathrm{ABC}$, then

$$
\mathrm{m} \angle \mathrm{ABP}+\mathrm{m} \angle \mathrm{CBP}=\mathrm{m} \angle \mathrm{ABC}
$$

($\angle \mathrm{ABP}$ is adjacent to $\angle \mathrm{CBP}$ because they share a common vertex and side)

Informal proof: $\angle \mathrm{A}=\angle \mathrm{C}$
$A+B=180$ degrees (supplementary angles)
$B+C=180$ degrees (supplementary angles)
$A=C$
(substitution)

Angle properties: Notes, proofs, and examples

IV. If parallel lines are cut by a transversal, the alternate interior angles are congruent

Parallel Line Postulate: If 2 parallel lines are cut by a transversal, then their corresponding angles are congruent.

Examples:

If $\angle 2=70^{\circ}$ and r is parallel to s,
$4=110^{\circ} \quad$ (2 and 4 are supplementary)
$3=70^{\circ} \quad$ (3 and 2 are corresponding)
$5=70^{\circ} \quad$ (3 and 5 are vertical angles)
$6=70^{\circ} \quad(3$ and 6 are alt. interior angles)
$1=? \quad(p$ is not parallel to r or $s)$
V. The sum of the interior angles of a triangle is 180°

Examples:

$\mathrm{S}+40+80=180$
$\mathrm{S}=60$ degrees
$\mathrm{T}+\mathrm{S}=180$ degrees
$T+60=180$
So, $T=120$ degrees

[^0]VI. Properties of Adjacent Angles

Adjacent Angles

1) Angles share a common vertex

2) Angles share a common side

1 and 2: NOT Adjacent

Angles 1 and 2 share a vertex, but they do not share a side.
3) No side lies within the other angle

AVB and CVB: NOT adjacent
AVB and CVB: adjacent

Example: Draw two complementary angles that are
a) adjacent
b) share a vertex, but are NOT adjacent
c) share a side, but are NOT adjacent
a)

c)

ABC and ABD are complementary and they share a side (BD)
But, they are not adjacent
b)

These angles overlap, but are not adjacent.

Angle Properties and Algebra

Example: $\overline{\mathrm{AB}} \perp \overline{\mathrm{BC}}$ Find the measure of $\angle \mathrm{ABD}$

Since $A B$ is perpendicular to $B C$, $\angle A B C$ is a right angle.

Therefore,

$$
\angle \mathrm{ABD}+\angle \mathrm{CBD}=90 \text { degrees }
$$

$$
\left(x^{2}+20\right)+(46-2 x)=90
$$

$$
x^{2}-2 x+66-90=0
$$

$$
(x+4)(x-6)=0
$$

$$
x=-4 \text { or } 6
$$

If $x=-4: \angle A B D=36$

$$
\angle \mathrm{CBD}=54
$$

If $x=6: \quad \angle \mathrm{ABD}=56$

$$
\angle \mathrm{CBD}=34
$$

$46-2 x$

The measure of angle
ABD is either 36° or 56°

Example: Find the measures of the angles in the figure.

Since there are 2 unknown variables, we need to find 2 equations.

$$
\begin{aligned}
& 2 \mathrm{y}+4=\mathrm{x}+6 \quad \text { (vertical angles are congruent) } \\
& (2 \mathrm{x}+3 \mathrm{y})+(\mathrm{x}+6)=180 \quad \text { (supplementary angles) } \\
& 3 \mathrm{x}-2 \mathrm{y}=-2 \\
& 3 \mathrm{x}+3 \mathrm{y}=174
\end{aligned}
$$

Using Combination/Elimination method:

$$
\begin{array}{r}
-3 x+6 y=6 \\
3 x+3 y=174 \\
9 y=180 \\
y=20
\end{array}
$$

Substitute $\mathrm{y}=20$ into

$$
\begin{gathered}
2 y+4=x+6 \\
x=38
\end{gathered}
$$

Since $\mathrm{x}=38$ and $\mathrm{y}=20$,

The measure of the acute angles is 44 .
And, the measure of the obtuse angles is 136 .

Angle Word Problems

Examples: - One of 2 complementary angles is 6 less than twice the other.
What is the measure of the larger angle?

- The measure of a supplement of an angle is 5 times that of the angle's complement.

Find the complement.

1) One of 2 complementary angles is 6 less than twice the other.

What is the measure of the larger angle?

Let $\mathrm{x}=$ "the other angle" then,
$(2 \mathrm{x}-6)=$ " 6 less than twice the other"
$x+(2 x-6)=90$
$3 \mathrm{x}=96$
$\mathrm{x}=32$
$2 x-6=58$

Suggested steps:

Step 1: (If possible) draw a picture
Step 2: Label variables
Step 3: Create equation(s) that describe(s) the question
Step 4: Solve the equation
Step 5: Answer question and check!
2) The measure of a supplement of an angle is 5 times that of the angle's complement.

Find the complement.
Let $\mathrm{x}=$ "an angle"
Then,
$(180-x)=$ "the supplement"
$(90-x)=$ "the complement"

$$
\begin{aligned}
(180-\mathrm{x}) & =5(90-\mathrm{x}) \\
180 & =450-5 \mathrm{x}+\mathrm{x} \\
4 \mathrm{x} & =270 \\
\mathrm{x} & =67.5
\end{aligned}
$$

The complement is 22.5 and the supplement is 112.5 the supplement 112.5 is 5×22.5

The complement is 22.5°

Practice Quiz- \rightarrow

1) Find x :

2) Determine X and Y

3) Given: l and m are parallel. Find the angles:

A:
B:
C:
D:
E:

7) Find S :

2) The ratio of A to B is $7: 2$

What is the measure of angle B ?

4) What is the measure of the smallest angle?

6) What is the measure of angle Z ?

8) Find x :

Angles Properties Quiz

9) Find x and y :

10) $\mathrm{m} \angle \mathrm{ABC}=40^{\circ}$
$\overline{\mathrm{BD}}$ bisects $\angle \mathrm{ABC}$

Find w and u

11) An angle is 8 less than its complement. What is the measure of the angle?
12) The supplement of an angle is ten more than twice the complement of the angle. What are the measures of the angle, complement, and supplement?
13)

$$
\begin{aligned}
& \angle 1=3 x^{2}-7 x+22 \\
& \angle 3=4 x+26
\end{aligned}
$$

What is the measure of angle 2 ?
14)

$$
\begin{aligned}
& \text { MLN }=x+23 \\
& \text { NLO }=x \\
& \text { NLP }=4 x-39 \quad \text { What is the measure of angle MLP? } \\
& \angle M L N \cong \angle \text { OLP }
\end{aligned}
$$

15) Draw two supplementary angles that share a vertex but are NOT adjacent...
b) that are non-adjacent.
16) Describe/Classify all the angles in the diagram.. (Hint: there are 6 angles.)
A

17) Identify all the angles, and describe your reasoning...

A \qquad

B \qquad

C \qquad

D \qquad
9) Determine the (acute) angle measures...

$\angle \mathrm{AOT}$ \qquad
$\angle \mathrm{MOT}$

$\angle \mathrm{X}$ \qquad
$\angle \mathrm{Y}$ \qquad

SOLUTIONS

1) Find x :
(supplementary angles $=180$)
$2 x+(6 x+4)=180$

8 x	$=176$
x	$=22$

2) The ratio of A to B is $7: 2$
let $\mathrm{A}=7 \mathrm{x}$
$B=2 x$
What is the measure of angle B ? $\quad 7 \mathrm{x}+2 \mathrm{x}=180$ degrees

Ratio is 7:2
3) Determine X and Y

5) Given: l and m are parallel. Find the angles:
4) What is the measure of the smallest angle?

$$
\begin{gathered}
2 \mathrm{x}+3 \mathrm{x}=120 \text { degrees } \\
5 \mathrm{x}=120 \\
\mathrm{x}=24 \text { degrees } \\
\text { angles of the triangle: } \\
48,72, \text { and } 60 \\
\text { the smallest angle is } \\
48 \text { degrees }
\end{gathered}
$$

6) What is the measure of angle Z ?

each angle is 110 .
7) Find S :

Draw a line segment parallel to the given lines; then, utilize theorem -- alt. interior angles are congruent.
(20 and 160 are supplementary)
8) Find x :

Add auxiliary parallel lines and then fill in the values.

Angles Properties Quiz

SOLUTIONS

9) Find x and y :

$$
\begin{array}{ll}
x=3 y & \text { (vertical angles) } \\
(x+2 y+4)+x=180 & \text { (supplementary angles) }
\end{array}
$$

Two equations, two unknowns... Solve the system using substitution:

$$
\begin{array}{rr}
x=3 y & 2(3 y)+2 y=176 \\
2 x+2 y=176 & 8 y=176 \\
& y=22 \\
x=66
\end{array}
$$

10) $\mathrm{m} \angle \mathrm{ABC}=40^{\circ}$
$\overline{\mathrm{BD}}$ bisects $\angle \mathrm{ABC}$
Find w and u
since BD is bisector, $2 \mathrm{w}+\mathrm{u}=3 \mathrm{u}+\mathrm{w}$
also, $\mathrm{ABC}=40$ therefore, $(2 w+u)+(3 u+w)=40$
$\left\{\begin{array}{l}w=2 u \\ 3 w+4 u=40 \\ 3(2 u)+4 u=40\end{array}\right.$

$$
\mathrm{u}=4
$$

$$
w=8
$$

11) An angle is 8 less than its complement. What is the measure of the angle?

Plug in numbers to check!

Let $\mathrm{x}=$ "an angle"
then, $(90-\mathrm{x})=$ the complement

$$
\begin{aligned}
\mathrm{x}+8 & =90-\mathrm{x} \\
2 \mathrm{x} & =82 \\
\mathrm{x} & =41 \quad \text { and, the complement }=49
\end{aligned}
$$

12) The supplement of an angle is ten more than twice the complement of the angle. What are the measures of the angle, complement, and supplement?

Let $\mathrm{A}=$ "an angle"
since A + "supplement" $=180$, "supplement" = 180-A
since $\mathrm{A}+$ "complement" $=90$,
"complement" = 90-A
"supplement" $=10+2$ ("complement")

$$
\begin{aligned}
180-\mathrm{A} & =10+2(90-\mathrm{A}) \\
180-\mathrm{A} & =10+180-2 \mathrm{~A} \\
\mathrm{~A} & =10
\end{aligned}
$$

Angle: 10
Supplementary Angle: 170
Complementary Angle: 80
13)

$\angle 1=3 x^{2}-7 x+22$
$\angle 3=4 x+26$
What is the measure of angle $2 ?$

$$
\begin{aligned}
& \text { Angle } 1 \text { equals Angle } 3 \text { (vertical angles congruent) SOLUTIONS } \\
& 3 x^{2}-7 x+22=4 x+26 \\
& 3 x^{2}-11 x-4=0 \\
& (3 x+1)(x-4)=0 \\
& x=-1 / 3 \text { or } 4 \\
& \text { If } x=-1 / 3: \quad \angle 1=3(-1 / 3)^{2}-7(-1 / 3)+22 \\
& =3 / 9+7 / 3+22=24 \frac{2}{3} \\
& \angle 2=4(-1 / 3)+26=24 \frac{2}{3} \\
& \text { Then, } \mathrm{m} \angle 3=180-24 \frac{2}{3}=155 \frac{1}{3} \\
& \text { If } \mathrm{x}=4: \quad \angle 1=3(4)^{2}-7(4)+22 \\
& =48-28+22=42 \\
& \angle 2=4(4)+26=42 \\
& \text { Then, } m \angle 3=180-42=138
\end{aligned}
$$

14)

$$
\mathrm{MLN}=\mathrm{x}+23
$$

$$
\mathrm{NLO}=\mathrm{x}
$$

$$
N L P=4 x-39
$$

$$
\angle \mathrm{MLN} \cong \angle \mathrm{OLP}
$$

$$
\begin{aligned}
& \text { Since } M L N=O L P, \quad x+23=y \\
& \text { and, since } N L O+O L P=N L P \text { (addition postulate) }
\end{aligned}
$$

$$
x+y=4 x-39
$$

Then, solve the system of equations:

$$
\begin{aligned}
& y=x+23 \\
& y=3 x-39 \\
& \begin{aligned}
x+23 & =3 x-39 \\
62 & =2 x
\end{aligned} \\
& 31=\mathrm{x} \\
& \text { then, } \\
& \mathrm{y}=54
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{MLN}=54 \\
& \mathrm{NLO}=31 \\
& \mathrm{OLP}=54 \quad \text { therefore, MLP }=139
\end{aligned}
$$

15) Draw two supplementary angles that share a vertex but are NOT adjacent...

16) Draw 2 complementary angles
a) that are adjacent.
b) that are non-adjacent.

17) Describe/Classify all the angles in the diagram.. (Hint: there are 6 angles.)
$\xrightarrow[\mathrm{E}]{\mathrm{Cl}}$
Acute angles: $\angle \mathrm{AEB} \quad \angle \mathrm{BEC} \quad \angle \mathrm{CED}$
Obtuse angles: $\angle \mathrm{AEC} \quad \angle \mathrm{BED}$
Straight Angle: $\angle \mathrm{AED}$
18) Identify all the angles, and describe your reasoning...

A 70 vertical angles

B $\quad 20$ (sum of triangle interior angles $=180$)

C 92 supplementary angles

D 88 corresponding angles (parallel lines cut by transversal)
19) Determine the (acute) angle measures...

$$
\lfloor\mathrm{AOT} \quad 145 \text { degrees } \quad 90+55
$$

$\angle \mathrm{MOT}$

$$
170 \text { degrees } \quad 45+90+35
$$

$\angle \mathrm{X} \quad 16$ degrees $\quad \begin{aligned} & \text { triangle contains angles } 90, \\ & 74,\end{aligned}$
$\angle \mathrm{Y} \quad 53$ degrees $\quad \mathrm{Y}=1 / 2(106)$ corresponding angles.. then, bisected..

Thanks for visiting the site. Hope it helped!
If you have questions, suggestions, or feedback, just let us know!

Also, at mathplane express for mobile at mathplane.ORG

Find more mathplane content and comics at Facebook, Google+, Pinterest, TES, and TeachersPayTeachers

One more geometry question: The ratio of an angle to its supplement is $3: 7$. What is the ratio to its complement?
(Answer on the next page)

The ratio of an angle to its supplement is $3: 7$.
What is the ratio to its complement?

$$
\begin{gathered}
3 \mathrm{x}+7 \mathrm{x}=180 \text { degrees } \\
10 \mathrm{x}=180 \text { degrees } \\
\mathrm{x}=18 \text { degrees.. } \\
3 \mathrm{x}=54 \text { degrees } \\
7 \mathrm{x}=126 \text { degrees } \\
\\
54+\mathrm{y}=90 \text { degrees } \\
\mathrm{y}=36 \text { degrees } \\
54: 36=3: 2
\end{gathered}
$$

[^0]: ** Illustrates the triangle (remote) exterior angle theorem: the measure of an exterior angle equals the sum of the 2 non-adjacent interior angles.

