Geometric Mean and Proportional Right Triangles

Notes, Examples, and Practice Exercises (with Solutions)

Topics include geometric mean, similar triangles, Pythagorean Theorem, 45-45-90, 30-60-90, and more.

Cross Product \& Similar Right Triangles

Using Cross Products to compare fractions

$$
\text { If } \frac{A}{B}=\frac{C}{D} \text { then } \mathrm{AD}=\mathrm{BC}
$$

$$
\text { Example: } \quad \frac{3}{4}=\frac{12}{16} \quad-->3 \times 16=4 \times 12=48
$$

$$
\frac{\mathrm{A}}{\mathrm{~B}}=\frac{\mathrm{C}}{\mathrm{D}} \quad \begin{gathered}
\text { multiply both } \\
\text { sides by } \mathrm{B}
\end{gathered} \quad \mathrm{~A}=\frac{\mathrm{BC}}{\mathrm{D}} \underset{\substack{\text { multiply both } \\
\text { sides by } \mathrm{D}}}{\text { a }} \quad \mathrm{AD}=\mathrm{BC}
$$

$$
\text { If } \frac{A}{B}=\frac{C}{D} \text { then } \frac{A}{C}=\frac{B}{D}
$$

$$
\text { Example: } \quad \frac{5}{9}=\frac{25}{45} \cdots>\frac{5}{25}=\frac{9}{45}
$$

$$
\frac{\mathrm{A}}{\mathrm{~B}}=\frac{\mathrm{C}}{\mathrm{D}} \quad \begin{gathered}
\text { multiply both } \\
\text { sides by B }
\end{gathered} \quad \mathrm{A}=\frac{\mathrm{BC}}{\mathrm{D}} \quad \begin{gathered}
\text { divide both } \\
\text { sides by C }
\end{gathered} \quad \frac{\mathrm{A}}{\mathrm{C}}=\frac{\mathrm{B}}{\mathrm{D}}
$$

Application: similar right triangles

For these similar triangles, the above ratios apply!

$\triangle \mathrm{ABC} \sim \triangle \mathrm{BDC} \leadsto \triangle \mathrm{ADB}$
3 similar triangles: each pair can be proven using (AA) Angle-Angle -- Triangle Similarity Theorems

Since the right triangles are similar, the ratios of their sides are the same.

There are numerous ratios that can be written.

Examples include:

$$
\begin{aligned}
& \frac{\text { left leg }}{\text { hypoteneuse }}=\frac{A B}{A C}=\frac{B D}{B C}=\frac{A D}{D B} \\
& \frac{\text { left leg (big) }}{\text { left leg (med) }} \quad \frac{A B}{B D}=\frac{A C}{B C} \frac{\text { hypo (big) }}{\text { hypo (med) })}
\end{aligned}
$$

$\frac{\mathrm{AB}}{\mathrm{AD}}=\frac{\mathrm{AC}}{\mathrm{AB}} \longrightarrow \mathrm{AB}^{2}=\mathrm{AC} \cdot \mathrm{AD}$
(note: using triangle similarity ratios, one can derive the pythagorean theorem)

Review Notes:

Pythagorean Theorem: $a^{2}+b^{2}=c^{2}$

Utilizing the Pythagorean Theorem or Trig Identities can find angle and side measurements.
However,
"Special Right Triangles" have features that made calculations easy!!

Trigonometry Relations:
b

a

$$
\begin{array}{ll}
\sin \theta=\frac{b}{c} & \csc \theta=\frac{c}{b} \\
\cos \theta=\frac{a}{c} & \sec \theta=\frac{c}{a} \\
\tan \theta=\frac{b}{a} & \cot \theta=\frac{a}{b}
\end{array}
$$

Special Right Triangles:

Note:
-- Pythagorean theorem confirms

$$
3^{2}+4^{2}=5^{2}
$$

-- Any multiple of 3-4-5 will work!
Examples: $30-40-50$ or $15-20-25$

Note:
-- Pythagorean theorem and trig relations confirm
(ex: $\sin 30^{\circ}=1 / 2=.5$)
-- any ratio of $1-\sqrt{3}-2$ will work.

$$
\rightarrow \mathrm{x}-\sqrt{3} \mathrm{x}-2 \mathrm{x}
$$

Note:
-- Pythagorean theorem and trig relations confirm
-- Congruent sides imply congruent (opposite) angles
-- any ratio of $1-1-\sqrt{2}$ will work. $\rightarrow \mathrm{x}-\mathrm{x}-\sqrt{2} \mathrm{x}$

Right Triangles: Altitude, Geometric Mean, and Pythagorean Theorem

Example: Find x :

Step 1: Find the length of the altitude...

Geometric mean of divided hypotenuse is the length of the altitude
$\sqrt{27}$ is the geometric mean of 3 and 9

Step 2: Find x

$$
\begin{gathered}
\sqrt{27}^{2}+9^{2}=x^{2} \\
27+81=x^{2} \\
x=\sqrt{108}
\end{gathered}
$$

$$
\frac{3}{\mathrm{~h}}=\frac{\mathrm{h}}{9} \quad \mathrm{~h}=\sqrt{27}
$$

Pythagorean Theorem:
$a^{2}+b^{2}=c^{2} \quad \begin{aligned} & \text { where } a \text { and } b \text { are legs } \\ & \text { and } c \text { is the hypotenuse. }\end{aligned}$

Step 3: Check solution (with other sides)

$$
\begin{aligned}
3^{2}+\sqrt{27}^{2} & =c^{2} \\
c & =6
\end{aligned}
$$

Then,

$$
\begin{aligned}
& 6^{2}+\sqrt{108}^{2}=12^{2} \\
& 36+108=144
\end{aligned}
$$

Altitude to Hypotenuse, Proportions, and
Pythagorean Theorem
A surfer wants to walk directly to the beach from his car. (see diagram)
a) What is the shortest distance to the beach?
b) How far is the beach spot from the snack bar?
*** The walk directly to the beach will form a right angle (i.e. creating altitude to hypotenuse)
*** The distance from Restroom to Snack Bar is 100 yds. (Pythagorean Theorem)

a) Recognizing "altitude to hypotenuse" cuts right triangle into 3 similar right triangles....

$$
\text { medium triangle } \quad \text { large triangle }
$$

$$
\begin{aligned}
& \frac{\text { hypotenuse }}{\text { small leg }} \quad \frac{80}{\mathrm{~d}}=\quad \frac{100}{60} \\
& d=48
\end{aligned}
$$

b) Then, to find distance from beach spot to snack bar (x) we know that d is the geometric mean between x and 100 - x...

Distance from beach spot
$\frac{100-x}{48}=\frac{48}{x}$ to snack bar is 64 ,
because $64^{2}+48^{2}=80^{2}$

$$
\begin{gathered}
2304=100 x-x^{2} \\
x^{2}-100 x+2304=0 \\
x=36 \text { or } 64 \ldots
\end{gathered}
$$

Practice Exercises- \rightarrow

In each triangle, find x and y . (calculator is NOT necessary)
A)

B)

C)

D)

E)

F)

G)

H)

1)

$$
\begin{gathered}
\overline{\mathrm{DB}} \perp \overline{\mathrm{AC}} \\
\overline{\mathrm{AD}} \perp \overline{\mathrm{CD}} \\
\overline{\mathrm{BC}}=5 \\
\overline{\mathrm{AD}}=6
\end{gathered}
$$

$$
\text { Find the length } \overline{\mathrm{DB}}
$$

$$
\text { and } \overline{\mathrm{AB}}
$$

2) Write a similarity statement for the 3 triangles:

3)

Given Trapezoid TRAP, with bases $\overline{\mathrm{TR}}$ and $\overline{\mathrm{PA} . . .}$
Find $\overline{\mathrm{TR}}$ and $\overline{\mathrm{RA}}$
4)

Always, Sometimes, or Never?
i) $a^{2}+b^{2}=(c+d)^{2}$
ii) $\mathrm{e}^{2}=\mathrm{cd}$
5)

$\begin{array}{ll}\overline{\mathrm{AC}} \| \text { to the } y \text {-axis } & \\ \overline{\mathrm{AC}} \perp \mathrm{BD} & \mathrm{A}(-4,3) \\ \overline{\mathrm{AB}} \perp \mathrm{BC}(-10,-6)\end{array}$

What is the coordinate of D ?
What is the coordinate of C ?

Parts of Proportional Right Triangles

Find x :

B)

C)

D)

Solve:

1)

2)

3)

Solutions \rightarrow

SOLUTIONS

In each triangle, find x and y . (calculator is NOT necessary)

A)

2 congruent legs, so it is a 45-45-90 right triangle...

$$
\begin{aligned}
& \mathrm{y}=4 \\
& \mathrm{x}=4 \sqrt{2}
\end{aligned}
$$

B)

30-60-90 right triangle...
small leg is $1 / 2$ the hypotenuse..

$$
x=7
$$

medium side is small $\cdot \sqrt{3}$
$\mathrm{y}=7 / \sqrt{3}$
C)

$$
x=10 \quad y=10
$$

D)

recognizing the ratios of the sides,

$$
\mathrm{y}=4 \quad \text { and } \quad \mathrm{x}=8
$$

F)

since the small leg is $8 \sqrt{3}$, the big leg is $\sqrt{3} \cdot 8 \sqrt{3}=24=\mathrm{x}$ and, the hypotenuse is $2 \cdot 8 \sqrt{3}=16 \sqrt{3}=y$
H)

$$
\begin{aligned}
& \frac{8}{x}=\frac{\sqrt{3}}{1} \\
& \sqrt{3} x=8 \\
& x=\frac{8}{\sqrt{3}}
\end{aligned}
$$

$$
y=2 \cdot \frac{8}{\sqrt{3}}=\frac{16}{\sqrt{3}}
$$

1)

$\overline{\mathrm{DB}} \perp \overline{\mathrm{AC}}$
$\overline{\mathrm{AD}} \perp \overline{\mathrm{CD}}$
$\overline{\mathrm{BC}}=5$
$\overline{\mathrm{AD}}=6$
$\left\{\begin{array}{l}x^{2}+y^{2}=36 \quad \text { (Pythagorean Theorem) } \\ \frac{y}{x}=\frac{x}{5} \quad \frac{\text { "left/small leg" }}{\text { "bottom/large leg" }} \quad \text { Similar triangles } \\ x^{2}=5 y \\ 5 y+y^{2}=36\end{array}\right.$
$y^{2}+5 y-36=0$
$(y+9)(y-4)=0$
$\mathrm{y}=4 \quad$ (but, not $-9--$ distance cannot be negative!)
Since $\mathrm{y}=4$, $x=\sqrt{20}=2 \sqrt{5}$
2) Write a similarity statement for the 3 triangles:

3)

Given Trapezoid TRAP, with bases $\overline{\mathrm{TR}}$ and $\overline{\mathrm{PA} . . .}$

Find $\overline{\mathrm{TR}}$ and $\overline{\mathrm{RA}}$

First, draw altitudes to create right triangles..
then, using geometry properties, label the other parts..

$$
\begin{aligned}
& \text { 45-45-90 } \\
& \text { rt triangle }
\end{aligned} \quad 1: 1: \sqrt{2}
$$

$$
\begin{aligned}
& \overline{\mathrm{TR}}=7+4 \sqrt{3} \\
& \overline{\mathrm{RA}}=4 / \sqrt{6}
\end{aligned}
$$

$30-60-90$ rt triangle $1: \sqrt{3}: 2$
4)

SOLUTIONS

Always, Sometimes, or Never?
i) $\mathrm{a}^{2}+\mathrm{b}^{2}=(\mathrm{c}+\mathrm{d})^{2} \quad$ Always (Pythagorean Theorem)
ii) $\mathrm{e}^{2}=\mathrm{cd}$

Sometimes (If e is an altitude, then yes.. Otherwise, no...)
5)

$\overline{\mathrm{AC}} \|$ to the y -axis
$\overline{\mathrm{AC}} \perp \mathrm{BD} \quad \mathrm{A}(-4,3) \quad \mathrm{B}(-10,-6)$
$\overline{A B} \perp B C$

What is the coordinate of D ? $\quad(-4,-6)$
What is the coordinate of $\mathrm{C} ? \quad \mathrm{AD}=9$
$B D=6$

Using Altitude on Hypotenuse Theorem,

$$
\begin{gathered}
\mathrm{AD} \cdot \mathrm{DC}=\mathrm{BD}^{2} \\
9 \mathrm{DC}=6^{2} \\
\mathrm{DC}=4
\end{gathered}
$$

Therefore, point C is $(-4,-10)$

Parts of Proportional Right Triangles

SOLUTIONS

Find x :
A)

B)

$$
\begin{gathered}
R^{2}+8^{2}=(2 x+1)^{2} \\
R^{2}=8 x
\end{gathered}
$$ Geometric mean of altitude

$$
\frac{8}{R}=\frac{R}{X}
$$

$$
\begin{aligned}
& \mathrm{Y}=\sqrt{9 \mathrm{x}} \quad \begin{array}{l}
\text { (altitude is geometric mean of split hypotenuse) } \\
\mathrm{Y}=\sqrt{(\mathrm{x}+3)^{2}-\mathrm{x}^{2}} \quad \text { (Pythagorean Theorem) }
\end{array} \\
& \sqrt{9 \mathrm{x}}=\sqrt{(\mathrm{x}+3)^{2}-\mathrm{x}^{2}} \quad \text { substitution } \\
& 9 \mathrm{x}=\mathrm{x}^{2}+6 \mathrm{x}+9-\mathrm{x}^{2} \\
& 3 \mathrm{x}=9
\end{aligned}
$$

Pythagorean Theorem

Set equations equal to each other:

$$
\begin{gathered}
(2 x+1)^{2}-8^{2}=8 x \\
4 x^{2}+4 x+1-64=8 x \\
4 x^{2}-4 x-63=0 \\
(2 x-9)(2 x+7)=0 \\
x=9 / 2 \text { or }-7 / 2
\end{gathered}
$$

Since x cannot be negative, the solution is

$$
\mathrm{x}=9 / 2 \text { or } 4.5
$$

To check: See if all the right triangle measures are OK

3) Pythagorean Thm: $6^{2}+(9 / 2)^{2}=(x-2)^{2}$

$$
\begin{aligned}
& 36+81 / 4=x^{2}-4 x+4 \\
& x^{2}-4 x-52.25=0 \\
& x=9.5 \text { or }-5.5 \text { (quadratic formula) }
\end{aligned}
$$

D)

Since a side cannot be negative $x=9.5$
To check: observe all the right triangles: 6-8-10 $\quad 4.5-6-7.5 \quad 7.5-10-12.5$
$2 \times(3-4-5) \quad 1.5 \times(3-4-5) \quad 2.5 \times(3-4-5)$

$$
\text { Altitude to hypotenuse: } \quad \begin{aligned}
12^{2} & =11(\mathrm{x}-10) \\
144 & =11 \mathrm{x}-110 \\
11 \mathrm{x} & =254
\end{aligned}
$$

$$
x=23.1
$$

Solve:

$$
\begin{aligned}
& x^{2}=(24)(6) \\
& x=12 \quad \begin{array}{l}
\text { Altitude to Hypotenuse } \\
\text { Theorem }
\end{array} \\
& x^{2}+6^{2}=y^{2} \\
& 144+36=y^{2} \\
& y=\sqrt{180}=6 / \sqrt{5} \quad \text { Pythagore }
\end{aligned}
$$

Pythagorean Theorem

$$
\begin{aligned}
& y^{2}+z^{2}=30^{2} \\
& 180+z^{2}=900
\end{aligned}
$$

$$
\mathrm{z}=\sqrt{720}=12 \sqrt{5}
$$

2)

$$
\begin{array}{ll}
Y^{2}=(x+4)^{2}-x^{2} & \text { Pythagorean Theorem } \\
Y^{2}=(x)(12-x) & \begin{array}{l}
\text { Altitude to Hypotenuse } \\
\text { Theorem }
\end{array}
\end{array}
$$

(Substitution): set equations equal to each other

$$
\begin{gathered}
(x+4)^{2}-x^{2}=(x)(12-x) \\
8 x+16=12 x-x^{2} \\
x^{2}-4 x+16=0
\end{gathered}
$$

3)

$$
\frac{y}{9}=\frac{16}{y} \quad y=12 \quad \begin{aligned}
& \text { Altitude to Hypotenuse } \\
& \text { Theorem }
\end{aligned}
$$

$z=15 \quad$ Pythagorean Triple
$3 \times(3-4-5)=9-12-15$ right triangle

$$
\begin{aligned}
& x^{2}+z^{2}=25^{2} \\
& x^{2}+225=625
\end{aligned}
$$

$$
x=20
$$

Thanks for visiting. (Hope it helped!)
If you have questions, suggestions, or requests, let us know.
Enjoy

Check out Mathplane Express for mobile and tablets at mathplane.org Also, at Facebook, Google+, TeachersPayTeachers, TES, and Pinterest

Angle Bisector, Pythagorean Theorem, and Means/Proportional

Find the length of $\overline{\mathrm{DE}}$
Step 1: Utilize the "Geometric Mean of divided Hypotenuse"

$$
\begin{aligned}
\frac{\mathrm{AD}}{\mathrm{DC}} & =\frac{\mathrm{DC}}{\mathrm{DB}} \\
\mathrm{DC}^{2} & =\mathrm{AD} \cdot \mathrm{DB} \\
\mathrm{DC} & =\sqrt{24}
\end{aligned}
$$

Step 2: Utilize the Pythagorean Theorem

$$
\begin{array}{r}
\mathrm{DB}^{2}+\mathrm{DC}^{2}=\mathrm{CB}^{2} \\
64+24=\mathrm{CB}^{2} \\
\mathrm{CB}=\sqrt{88} \\
\mathrm{CB}^{2}+\mathrm{AC}^{2}=\mathrm{AB}^{2} \\
88+\mathrm{AC}^{2}=121 \\
\mathrm{AC}=\sqrt{33}
\end{array}
$$

Step 3: Use the "Angle Bisector Theorem"
Since AE is an angle bisector in triangle CAD ,

$$
\begin{aligned}
& \frac{\mathrm{AD}}{\mathrm{AC}}=\frac{\mathrm{DE}}{\mathrm{CE}} \\
& \frac{3}{\sqrt{33}}=\frac{\mathrm{x}}{\sqrt{24}-\mathrm{x}} \\
& 3 \sqrt{24}-3 \mathrm{x}=\sqrt{33} \mathrm{x} \\
& 3 / \sqrt{24}=N \sqrt{33} \mathrm{x}+3 \mathrm{x} \\
& 14.697=8.745 \mathrm{x} \\
& \mathrm{x}=1.68
\end{aligned}
$$

