Algebra I

 Review Test 002

 Review Test 002
 (And, Solutions)

25 questions include radicals, graphing, linear equations, functions, absolute value, quadratics, word problems, and more!

Math 002 Review Practice

1) a) Evaluate $x^{3}+4 x y-3 y^{2}$ if $x=2$ and $y=-3$
b) Simplify $5 t-[3 t-2(6+4 t)+12]$
2) Simplify. Do not include negative exponents in your answers.
a) $\frac{6 \mathrm{a}^{4} \mathrm{~b}^{7}}{-\left(2 \mathrm{a}^{2} \mathrm{~b}\right)^{2}}$
b) $\left(3 x^{3} y^{5}\right)\left(4 x^{-5} y\right)$
c) $\left(4 x^{6}\right)^{\frac{3}{2}}$
d) $\frac{-8 \mathrm{~m}^{-4} \mathrm{n}^{3}}{4 \mathrm{~m}^{-3} \mathrm{n}^{4}}$
3) For the given graph, find each of the following:
a) $f(-3)$
b) the domain of f
c) all x where $f(\mathrm{x})=0$
d) the (approximate) range of f

4) 10 calculators at the math store, including sales tax, cost $\$ 1268.30$. If sales tax is 10%, what is the price of each calculator?
5) Write the equation of a line containing the points $(3,5)$ and $(1,-3)$. What is the y-intercept? What is the x-intercept?
6) Solve the following system:

$$
\begin{aligned}
& 3 x+10 y=14 \\
& -5 x+y=12
\end{aligned}
$$

7) Sketch the following system: $x-3 y<15$

$$
x-3 y<15
$$

$$
y \geq x-7
$$

8) Tom sold 545 t -shirts at the weekend market. The prices were $\$ 8.50$ for each large and $\$ 5$ for each small. If total revenue was $\$ 3873$, how many of each size did he sell?
9) Solve for each:
a) $|x-5|=13$
b) $|y+5|+3=10$
c) $|3 x|+9=6$
d) $2|z+2|=16$
10) Solve the following: $(x+3)+4<2(x-5)$

Write answer in interval notation; Graph the solution.

11) Expand:
a) $(2 x-4)^{2}$
b) $(x+3)\left(x^{2}+4 x-5\right)$
12) Given the polynomial $4 x^{3}-3 x^{5}+2 x-1$
a) What is the degree of the polynomial?
b) Arrange the terms in descending order.
c) What is the leading coefficient?
d) Evaluate the polynomial at $x=1$
13) Factor:
a) $4-9 x^{2}$
b) $2 y^{2}+5 y-7$
c) $3 x^{2}+15 x+12$
14) Solve:
a) $x^{2}+5 x=-4$
b) $x^{3}-4 x=0$
c) $x^{2}+3 x-7=0$
15) Solve for m :
a) $y=\frac{L m}{r}$
b) $5 \mathrm{~s}-(2 \mathrm{~m}+3)=\mathrm{Q}$

Math 002 Review Practice

16) What are the zeros of the function $f(\mathrm{x})=3 \mathrm{x}^{2}+19 \mathrm{x}+20$?
17) A water balloon is launched off a balcony with an initial velocity of $64 \mathrm{ft} /$ second. It's height in feet, $h(t)$, at t seconds is given by the function:

$$
h(t)=-16 t^{2}+64 t+96
$$

a) What is the height of the balcony?
b) How high is the balloon at 2 seconds?
c) When does the balloon hit the ground?
18) Simplify
a) $\frac{m^{2}+4 m+3}{3 m+12} \cdot \frac{m+4}{m^{2}-9}$
b) $\frac{x^{2}-4}{2 x} \div \frac{x^{2}-x-6}{4 x+10}$
19) Solve

$$
\frac{s}{s+5}+\frac{4}{s-1}=\frac{2 s+26}{s^{2}+4 s-5}
$$

20) Answer (leaving answers in $\mathrm{a}+\mathrm{b} i$ form)
a) $3+5 i-(2-3 i)$
b) $(5+3 i)(2+i)$

Math 002 Review Practice
21) Rationalize the denominator:
a) $\frac{2}{\sqrt{3}}$
b) $\frac{3}{5+\sqrt{6}}$
22) The diagonal of a square is 8 feet. What is the length of each side?
23) $g(x)=3 x^{2}-30 \mathrm{x}+63$
a) Find $g(0)$
b) Find $g(\mathrm{n}+1)$
c) What is the vertex of the graph $\mathrm{y}=g(\mathrm{x})$?
d) What are the zeros of the function?
24) Solve: $\sqrt{5 \mathrm{x}+54}=\mathrm{x}+8$ (Identify extraneous solutions)
25) Sketch a graph of the following: $\quad f(x)=-2(x-1)^{2}+4$

Label the vertex and 2 other points.

To earn a little extra coin, Bill Shakespeare works as a substitute math teacher.

SOLUTIONS

SOLUTIONS

1) a) Evaluate $x^{3}+4 x y-3 y^{2}$ if $x=2$ and $y=-3$
$(2)^{3}+4(2)(-3)-3(-3)^{2}=8-24-27=-43$
b) Simplify $5 t-[3 t-2(6+4 t)+12]$
$5 t-[3 t-12-8 t+12]=5 t-[-5 t]=10 t$
2) Simplify. Do not include negative exponents in your answers.
a) $\frac{6 a^{4} \mathrm{~b}^{7}}{-\left(2 a^{2} \mathrm{~b}\right)^{2}}$
b) $\left(3 x^{3} y^{5}\right)\left(4 x^{-5} y\right)$
c) $\left(4 x^{6}\right)^{\frac{3}{2}}$
d) $\frac{-8 \mathrm{~m}^{-4} \mathrm{n}^{3}}{4 \mathrm{~m}^{-3} \mathrm{n}^{4}}$
$\frac{6 a^{4} b^{7}}{-\left(4 a^{4} b^{2}\right)}=\frac{-3 b^{5}}{2}$
$12 x^{-2} y^{6}=\frac{12 y^{6}}{x^{2}}$

$-2 m^{-1} n^{-1}=\frac{-2}{m n}$
3) For the given graph, find each of the following:
a) $f(-3)=3$
b) the domain of f (domain is all x values):

$$
[-4,5] \text { or }-4 \leq x \leq 5
$$

c) all x where $f(\mathrm{x})=0$

$$
f(0)=0 \text { and } f(3)=0
$$

d) the (approximate) range of f
(range is all $f(\mathrm{x})$ values)

$$
[-3,4] \text { or }-3 \leq x \leq 4
$$

4) 10 calculators at the math store, including sales tax, cost $\$ 1268.30$. If sales tax is 10%, what is the price of each calculator?

$$
\begin{aligned}
& \text { Let } \mathrm{C}=\text { calculator cost } \\
& 10 \mathrm{C}=\text { cost of } 10 \text { calculators } \\
& .1=\text { sales tax rate }
\end{aligned}
$$

$$
\begin{array}{r}
10 \mathrm{C}+.1(10 \mathrm{C})=1268.30 \\
11 \mathrm{C}=1268.30 \\
\mathrm{C}=\$ 115.20
\end{array}
$$

5) Write the equation of a line containing the points $(3,5)$ and $(1,-3)$. What is the y-intercept? What is the x-intercept?

$$
\text { slope }=\frac{\Delta y}{\Delta x}=\frac{5-(-3)}{3-1}=4
$$

$$
\begin{array}{|r|}
\hline \text { pt. slope form: } \\
\hline y-5=4(x-3) \\
\hline \text { slope intercept form: } y=4 x-12 \\
\hline
\end{array}
$$

SOLUTIONS

6) Solve the following system:

$$
\begin{aligned}
& 3 x+10 y=14 \\
& -5 x+y=12 \\
& y=5 x+12
\end{aligned}
$$

$$
\text { using substitution: } \begin{aligned}
3 x+10(5 x+12) & =14 \\
53 x+120 & =14 \\
x & =-2
\end{aligned}
$$

$$
\begin{gathered}
3 x+10 y=14 \\
3(-2)+10 y=14 \\
y=2
\end{gathered}
$$

7) Sketch the following system: $x-3 y<15$

$$
y \geq x-7
$$

$$
\begin{array}{cc}
\text { test }(0,0): \quad(0)-3(0)<15 \\
0<15 \\
\text { test }(0,0): \quad(0) \geq(0)-7 \\
0 \geq-7
\end{array}
$$

8) Tom sold 545 t -shirts at the weekend market. The prices were $\$ 8.50$ for each large and $\$ 5$ for each small. If total revenue was $\$ 3873$, how many of each size did he sell?

$$
\begin{aligned}
\text { Let } \mathrm{L} & =\text { \# of large shirts } \\
\mathrm{S} & =\text { \# of small shirts }
\end{aligned} \quad \begin{gathered}
\mathrm{L}+\mathrm{S}=545 \\
\$ 8.5(\mathrm{~L})+\$ 5(\mathrm{~S})=\$ 3873
\end{gathered}
$$

$$
\mathrm{S}=545-\mathrm{L}
$$

$$
8.5(\mathrm{~L})+5(545-\mathrm{L})=3873
$$

$$
8.5 \mathrm{~L}+2725-5 \mathrm{~L}=3873
$$

$$
\begin{gathered}
3.5 \mathrm{~L}=1148 \\
\mathrm{~L}=328
\end{gathered}
$$

$\$ 8.5 \times 328=\$ 2788$
$\mathrm{L}+\mathrm{S}=545$
$\$ 5 \times 217=\$ 1085$
$(328)+\mathrm{S}=545$
$\mathrm{~S}=217$
$-5(-2)+(2)=12$
$10+2=12$
$12=12$
9) Solve for each:
a) $|x-5|=13$
b) $|y+5|+3=10$
c) $|3 x|+9=6$
d) $2|z+2|=16$
$\begin{aligned} & x-5=13 \\ & x=18 \\ & x-5=-13 \\ & x=-8\end{aligned}$

$$
\begin{aligned}
& \text { (isolate the absolute value term first!) } \\
& \begin{aligned}
|y+5| & =7 \\
y+5 & =7 \\
y & =2 \\
y+5 & =-7 \\
y & =-12
\end{aligned}
\end{aligned}
$$

$$
|3 x|=-3
$$

$$
|z+2|=8
$$

$$
\begin{aligned}
& \text { no solution! } \\
& \text { absolute value cannot } \\
& \text { be negative. }
\end{aligned}
$$

$$
\begin{array}{r}
z+2=8 \\
z=6
\end{array}
$$

$z+2=-8$
$z=-10$
10) Solve the following: $(x+3)+4<2(x-5)$

Write answer in interval notation; Graph the solution.

$$
\begin{aligned}
x+7 & <2 x-10 \\
17 & <x
\end{aligned}
$$

11) Expand:
a) $(2 x-4)^{2}$
b) $(x+3)\left(x^{2}+4 x-5\right)$

$$
\begin{aligned}
& (2 x-4)(2 x-4)= \\
& 4 x^{2}-8 x-8 x+16 \\
& 4 x^{2}-16 x+16
\end{aligned}
$$

12) Given the polynomial $4 x^{3}-3 x^{5}+2 x-1$
a) What is the degree of the polynomial? the (largest) degree is 5
b) Arrange the terms in descending order. $\quad-3 x^{5}+4 x^{3}+2 x-1$
c) What is the leading coefficient? -3
d) Evaluate the polynomial at $\mathrm{x}=1 \quad 4(1)^{3}-3(1)^{5}+2(1)-1=2$
13) Factor:
a) $4-9 x^{2}$
c) $3 x^{2}+15 x+12$
(difference of squares)
$(2+3 x)(2-3 x)$
b) $2 y^{2}+5 y-7$
factors of $2 y^{2}$: y and $2 y$ factors of 7:1 and 7

$$
(2 \mathrm{y} \quad)(\mathrm{y} \quad)
$$

$$
(2 y+7)(y-1)
$$

14) Solve:
a) $x^{2}+5 x=-4$
b) $x^{3}-4 x=0$
$x^{2}+5 x+4=0$
$x\left(x^{2}-4\right)=0$
$(x+1)(x+4)=0$
$\mathrm{x}(\mathrm{x}+2)(\mathrm{x}-2)=0$
$\mathrm{x}=-1,-4$
$\mathrm{x}=0,2,-2$
c) $x^{2}+3 x-7=0$

$$
\begin{aligned}
& \text { use quadratic formula: } \\
& \begin{array}{l}
\mathrm{a}=1 \\
\mathrm{~b}=3 \\
\mathrm{c}=-7 \\
\\
\\
\end{array} \quad \frac{-3 \pm \sqrt{9-4(1)(-7)}}{2(1)} \\
&
\end{aligned}
$$

15) Solve for m :
b) $5 \mathrm{~s}-(2 \mathrm{~m}+3)=\mathrm{Q}$ $-(2 \mathrm{~m}+3)=\mathrm{Q}-5 \mathrm{~s}$

$$
2 \mathrm{~m}+3=5 \mathrm{~s}-\mathrm{Q}
$$

a) $\mathrm{y}=\frac{\mathrm{Lm}}{\mathrm{r}}$
$\mathrm{yr}=\mathrm{Lm}$

$$
\frac{\mathrm{yr}}{\mathrm{~L}}=\mathrm{m}
$$

b)

$$
2 \mathrm{~m}=5 \mathrm{~s}-\mathrm{Q}-3
$$

$$
\mathrm{m}=\frac{5 \mathrm{~s}-\mathrm{Q}-3}{2}
$$

greatest common factor is 3 :

$$
3\left(x^{2}+5 x+4\right)
$$

then, factor the trinomial:

$$
3(x+1)(x+4)
$$

Math 002 Review Practice

SOLUTIONS

16) What are the zeros of the function $f(x)=3 \mathrm{x}^{2}+19 \mathrm{x}+20$?

$$
\begin{aligned}
& \text { set function equal to zero (and factor): } \quad(3 x+\quad)(x+\quad)=0 \\
& \qquad \text { factors of } 20: 4 / 51 / 20 \quad 2 / 10 \\
&
\end{aligned}
$$

17) A water balloon is launched off a balcony with an initial velocity of $64 \mathrm{ft} /$ second. It's height in feet, $h(t)$, at t seconds is given by the function:

$$
h(t)=-16 t^{2}+64 t+96
$$

a) What is the height of the balcony? $\mathrm{h}(0)=-16(0)^{2}+64(0)+96=96$ feet \quad (balloon at $\mathrm{t}=0$)
b) How high is the balloon at 2 seconds? $\mathrm{h}(\mathrm{t})=-16(2)^{2}+64(2)+96=160$ feet
c) When does the balloon hit the ground?

$$
\begin{aligned}
\text { set height } \mathrm{h}(\mathrm{t})=0 \quad-16 \mathrm{t}+64 \mathrm{t}+96 & =0 \\
\mathrm{t}^{2}-4 \mathrm{t}-6 & =0
\end{aligned}
$$

$$
\mathrm{t}=\frac{4 \pm \sqrt{16+24}}{2}=2+\sqrt{10}
$$

(time) t cannot be less than 0
18) Simplify
a) $\frac{m^{2}+4 m+3}{3 m+12} \cdot \frac{m+4}{m^{2}-9}$
$\frac{(m+1)(m+3)}{3(m+4)} \cdot \frac{m+4}{(m+3)(m-3)}$

$$
\frac{\mathrm{m}+1}{3(\mathrm{~m}-3)}
$$

b) $\frac{x^{2}-4}{2 x} \div \frac{x^{2}-x-6}{4 x+10}$ $\frac{(\mathrm{x}-2)(\mathrm{x}+2)}{2 \mathrm{x}} \div \frac{(\mathrm{x}-3)(\mathrm{x}+2)}{2(2 \mathrm{x}+5)}$ (invert and multiply)

$$
\frac{(x-2)(x+2)}{2 x} \cdot \frac{2(2 x+5)}{(x-3)(x+2)}=\frac{(x-2)(2 x+5)}{x(x-3)}
$$

19) Solve

$$
\begin{aligned}
& \frac{\mathrm{s}(\mathrm{~s}-1)}{(\mathrm{s}+5)(\mathrm{s}-1)}+\frac{4(\mathrm{~s}+5)}{(\mathrm{s}-1)(\mathrm{s}+5)}=\frac{2 \mathrm{~s}+26}{(\mathrm{~s}+5)(\mathrm{s}-1)} \\
& \mathrm{s}^{2}-\mathrm{s}+4 \mathrm{~s}+20=2 \mathrm{~s}+26 \\
& \mathrm{~s}^{2}+\mathrm{s}-6=0
\end{aligned}
$$

$$
(s+3)(s-2)=0 \quad \frac{-3}{2}+\frac{4}{-4}=\frac{20}{-8}
$$

$$
\mathrm{s}=-3,2
$$

$$
\frac{10}{-4}=\frac{20}{-8}
$$

$$
\frac{2}{7}+\frac{4}{1}=\frac{30}{7}
$$

20) Answer (leaving answers in $\mathrm{a}+\mathrm{b} i$ form)

$$
\frac{30}{7}=\frac{30}{7}
$$

a) $3+5 i-(2-3 i)$

$$
1+8 i
$$

b) $\begin{aligned} & (5+3 i)(2+i) \text { (FOIL) }\end{aligned}$

$$
10+5 i+6 i+3 i^{2}
$$

$$
10+11 i+3(-1)
$$

21) Rationalize the denominator:
a) $\frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}$ $\frac{2 \sqrt{3}}{3}$
b) $\frac{3}{5+\sqrt{6}} \cdot \frac{5-\sqrt{6}}{5-\sqrt{6}}=\frac{3(5-\sqrt{6})}{25+5 \sqrt{6}-5 \sqrt{6}-6}$ $=\frac{15-3 \sqrt{6}}{19}$
22) The diagonal of a square is 8 feet. What is the length of each side?
23) $g(x)=3 x^{2}-30 x+63$

(pythagorean theorem)

$$
\begin{aligned}
& \mathrm{s}^{2}+\mathrm{s}^{2}=(8)^{2} \\
& 2 \mathrm{~s}^{2}=64
\end{aligned}
$$

$$
\mathrm{s}=\sqrt{32}=4 \sqrt{2} \text { feet }
$$

a) Find $g(0) \quad 3(0)^{2}-30(0)+63=63$
b) Find $g(\mathrm{n}+1) 3(\mathrm{n}+1)^{2}-30(\mathrm{n}+1)+63=3 \mathrm{n}^{2}+6 \mathrm{n}+3-30 \mathrm{n}-30+63$

$$
=3 n^{2}-24 n+36
$$

c) What is the vertex of the graph $\mathrm{y}=g(\mathrm{x})$?

$$
\text { vertex: }(-\mathrm{b} / 2 \mathrm{a}, \mathrm{~g}(-\mathrm{b} / 2 \mathrm{a})) \quad \frac{-\mathrm{b}}{2 \mathrm{a}}=\frac{-(-30)}{2(3)}=5 \quad g(5)=75-150+63=-12 \quad \text { vertex: }(5,-12)
$$

d) What are the zeros of the function?

$$
\begin{array}{ll}
3 x^{2}-30 x+63=0 & x=3,7 \\
3\left(x^{2}-10 x+21\right)=0 & \\
3(x-3)(x-7)=0 &
\end{array}
$$

24) Solve: $\sqrt{5 \mathrm{x}+54}=\mathrm{x}+8$ (Identify extraneous solutions)
(square both sides)
$5 \mathrm{x}+54=(\mathrm{x}+8)^{2}$ check solutions: $\quad \sqrt{5(-1)+54}=(-1)+8$
$5 x+54=x^{2}+16 x+64$
$x^{2}+11 x+10=0$

$$
\begin{aligned}
& (x+1)(x+10)=0 \\
& x=-1,-10
\end{aligned}
$$

$$
\begin{aligned}
\sqrt{5(-10)+54} & =(-10)+8 \\
2 & =-2 \text { extraneous }
\end{aligned}
$$

25) Sketch a graph of the following: $\quad f(x)=-2(x-1)^{2}+4$

Label the vertex and 2 other points.
vertex: $(1,4)$
$f(0)=-2(0-1)^{2}+4=2$
$(0,2)$
$f(2)=-2(2-1)^{2}+4=2$
$(2,2)$

$$
\begin{aligned}
-2(x-1)^{2}+4 & =0 \\
-2(x-1)^{2} & =-4 \\
(x-1)^{2} & =2 \\
x-1= & \pm \sqrt{2} \\
(1+\sqrt{2}, 0) & (1-\sqrt{2}, 0)
\end{aligned}
$$

Thanks for visiting the site. (Hope it helped!)
If you have questions, suggestions, or requests, contact us. Cheers,

Mathplane.com
(Facebook, Pinterest, Teacherspayteachers, and Google +)

ONE MORE QUESTION:

$$
12+3(4+7) \div 3(5)=
$$

Order of Operations:

$$
12+3(4+7) \div 3(5)
$$

$$
\text { NOT } 12+33 \div 15=3
$$

$$
12+33 \div 3 \times 5
$$

$$
12+11 \times 5
$$

$$
\text { NOT } 12+33 / 15
$$

$$
12+55=67
$$

