Unit Circle and Trig Measures

Examples and Practice Exercises (with solutions)

What is it? A circle with a radius of one unit...
It's also a visual representation of special angles that give exact trig values...

Here is a triangle with hypotenuse length $1 \ldots$

$$
\begin{array}{ll}
\sin \ominus=\frac{y}{1}=y & \csc \ominus=\frac{1}{y} \\
\cos \ominus=\frac{x}{1}=x & \sec \ominus=\frac{1}{x} \\
\tan \ominus=\frac{y}{x} & \cot \ominus=\frac{x}{y}
\end{array}
$$

We can determine points on a circle with radius $1 \ldots$

Using the angles related to $45-45-90$ and 30-60-90 right triangles, using the hypotenuse of 1 , and applying
it to a coordinate plane, we create a "unit circle centered on the origin"....

Unit Circle: Finding Trig Values

Example: find $\sin 210^{\circ}$
Step 1: Draw angle in standard position

Step 2: Find reference angle

Step 3: Identify the triangle and label

$30-60-90$ right triangle

Step 4: distinguish 'negatives' and 'positives'

Quadrant III

Step 5: Find Trigonometry Value

$$
\text { Sine }=\frac{\text { Opposite }}{\text { Hypotenuse }}=\frac{-1}{2}
$$

$$
\operatorname{Sin}(210)=\frac{-1}{2}
$$

Note: --- If the angle is given in radians, convert to degrees and begin.
--- Step 4 is important! Don't forget the negatives.
Also, the hypotenuse is always positive.

Unit Circle: Finding Trig Values
(Convert to Degrees)

$$
\text { Example: } \operatorname{Tan} \frac{57}{4}
$$

$$
\frac{5 \pi}{4} \text { radians } \cdot \frac{180^{\circ}}{\pi \text { radians }}=225^{\circ}
$$

Step 1: Draw Angle in standard position

Step 2: Find Reference Angle

Step 3: Identify Triangle and label

Step 4: Negatives and Positives

45-45-90 right triangle
Quadrant III

Step 5: Find Trigonometry Value

$$
\text { tangent }=\frac{\text { opposite side }}{\text { adjacent side }}=\frac{-1}{-1}=1
$$

$$
\operatorname{Tan} \frac{5 \pi}{4}=1
$$

An angle in standard position whose terminal side lies on the x or y axis.
These angles include:

$$
\begin{aligned}
& 0, \pm 90, \pm 180, \pm 270, \pm 360 \ldots \\
& \pm \frac{-\pi}{2} \quad \pm \sqrt{\pi} \pm \frac{3 \sqrt{\pi}}{2} \pm 2 \sqrt{-\pi}
\end{aligned}
$$

```
The trig values of a quadrantal angle will be 0, -1, 1, or undefined
```

Using the unit circle or utilizing a "fictional triangle" and 'Soh Cah Toa'
Here are 2 approaches to finding the trig values of a quadrantal angle...
Example: Find $\sin \left(90^{\circ}\right)$
Using the Unit Circle

We know that $\sin =\frac{y}{r}$
so, $\sin (90)=\frac{1}{1}=1$

Creating an (imaginary) Triangle

This triangle has a reference angle of 90 ..
It's opposite side is 1 ,
adjacent side is 0 , and, hypotenuse is 1

$$
\sin =\frac{\text { opposite }}{\text { hypotenuse }}=\frac{1}{1}=1
$$

Example: Find the value of $\cot \left(\frac{3-\pi}{2}\right)$

We know that $\cot =\frac{x}{y}$
Therefore, $\cot \left(\frac{3 \uparrow \uparrow}{2}\right)=\frac{0}{-1}=0$

('reference angle' is 90 degrees)
Using an imaginary triangle, we know that
$\cot =\frac{\text { adjacent }}{\text { opposite }}=\frac{0}{-1}=0$

Unit Circle: Finding Trig Values -- Quadrantals

Example: $\operatorname{Sin} 270^{\circ}$
Step 1: Draw angle in standard position

Step 2: "Label the point"
(Reminder: it is a UNIT circle; the radius is 1)

Step 3: Apply the trig function

$$
\text { Sine }=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{\mathrm{y}}{\mathrm{r}}=\frac{-1}{1}=-1
$$

Finding Trig Values: Coterminal and "Negative" Angles
"Coterminal" Example: Find the exact trig value of $\sin \left(480^{\circ}\right)$
Step 1: Find Coterminal angle (between 0 and 360 degrees)

$$
480^{\circ}-360^{\circ}=120^{\circ}
$$

Since 480 and 120 are coterminal angles, their trig values are equal.

Step 2: Draw the angle in standard position

Step 3: Find Reference Angle

Step 4: "Identify the triangle and label"

Step 5: Find the trigonometry value

- 0

"Negative Angle" Example: Evaluate $\tan (-5 \uparrow / 4)$
Step 1: Draw the angle in standard position

Step 2: Find the reference angle

Since the angle is negative, move clock-wise along the unit circle!

Step 3: Identify the triangle and label

Step 4: find the trig value

$$
\text { Tan }=\frac{\text { Opposite side }}{\text { Adjacent side }}=\frac{1}{-1}=-1
$$

Practice $-\rightarrow$

Trig Values \& Unit Circle: Practice worksheet
Evaluate the following (NO tables! NO calculators!)

1) $\sin 30$
2) $\tan 210$
3) $\csc 120$
4) $\sec 0$
5) $\sin 225$
6) $\cot 315$
7) $\cos -45$
8) $\sin 270$
9) $\cot 180$
10) $\cos \frac{\pi}{3}$
11) $\sin \frac{3 \pi}{4}$
12) $\tan \frac{7 \pi}{4}$
13) $\csc \frac{5 \pi}{6}$
14) $\cos 3 \pi$
15) $\cos \frac{-\pi}{3}$

Trig Values and Unit Circle Worksheet: Coterminal and Negative Angles
Evaluate the following (without using a calculator or table)

1) $\sin \left(420^{\circ}\right)$
2) $\cos \left(\frac{9 \pi}{4}\right)$
3) $-\tan \left(135^{\circ}\right)$
4) $\tan \left(-135^{\circ}\right)$
5) $\sec \left(\frac{11 \pi}{3}\right)$
6) $\csc \left(\frac{-11 \pi}{3}\right)$
7) $\cos (7 \pi)$
8) $-\cot \left(\frac{14 \pi}{3}\right)$
9) $\csc \left(900^{\circ}\right)$
10) $-\sin \left(450^{\circ}\right)$
11) $\csc \left(-450^{\circ}\right)$
12) $\cot \left(-\frac{29 \pi}{6}\right)$
13) $\tan (\pi)$
14) $\sin \left(90^{\circ}\right)$
15) $\sec \left(-\frac{-\pi}{2}\right)$
16) $\cot \left(180^{\circ}\right)$
17) $\sin \left(\frac{3^{-\pi} \pi}{2}\right)$
18) $\csc (2-\pi)$

Find point (x, y) on the unit circle that corresponds to the real number t

1) $\mathrm{t}=\frac{7 \pi}{4}$
2) $\mathrm{t}=\frac{-\pi}{2}$
3) $t=\frac{5 \uparrow}{6}$
4) $t=\frac{-2 \hat{T}}{3}$
5) $\mathrm{t}=\frac{2 \pi}{7}$ (calculator)
6) $t=3.5$ radians (calculator)

Trig Values \& Unit Circle: Practice Worksheet
Evaluate the following:

1) $\sin 30$
2) $\tan 210$
$\frac{1}{2} \xrightarrow[{\sqrt{3}}]{2}$

$$
\frac{-1}{-\sqrt{3}}=\frac{\sqrt{3}}{3}
$$

4) $\sec 0$

5) $\sin 225$
$\frac{-1}{\sqrt{2}}=\frac{-\sqrt{2}}{2}$

7) $\cos -45$

$\frac{1}{\sqrt{2}}$	
$=\frac{\sqrt{2}}{2}$	
	$\begin{array}{c}1 \\ \sqrt{2}\end{array}$

$$
\begin{aligned}
& \sin =\frac{y}{r} \\
& \frac{-1}{1}=-1
\end{aligned}
$$

10) $\cos \frac{\pi}{3}=60^{\circ}$

$$
\frac{1}{2}
$$

11) $\sin \frac{3 \pi}{4}=135^{\circ}$

SOLUTIONS
3) $\csc 120$
$\frac{2}{\sqrt{3}}=\frac{2 \sqrt{3}}{3}$

6) $\cot 315$

$$
\frac{\mathrm{adj}}{\mathrm{opp}}=-1
$$

9) $\cot 180$

10) $\tan \frac{7 \pi}{4}=315^{\circ}$
$\frac{-1}{1}=-1$

$$
\text { 13) } \csc \frac{5 \pi}{6}=150^{\circ}
$$

14) $\cos 3 \pi=540^{\circ}$
$\csc =\frac{\text { hyp }}{\text { opp }}$
$\frac{2}{1}=2$

15) $\cos \frac{-\pi}{3}=-60^{\circ}$

(same solution as question 10!!)

Trig Values and Unit Circle Worksheet: Coterminal and Negative Angles
Evaluate the following (without using a calculator or table)
2) $\cos \left(\frac{9 \pi}{4}\right) \quad \begin{aligned} & \text { coterminal } \\ & \text { angle }\end{aligned}$
$\frac{9 \pi}{4}-\frac{8 \pi}{4}=\frac{\pi}{4} k$

$$
\cos \frac{\pi}{4}=\frac{\sqrt{2}}{2}
$$

SOLUTIONS

4) $\tan \left(-135^{\circ}\right) \quad \tan (-135)=\frac{-1}{-1}$
5) $\sec \left(\frac{11 \pi}{3}\right)$ coterminal angles

$$
\frac{11 \pi}{3}-\frac{6 \pi}{3}=\frac{5 \pi}{3}
$$

$\tan (135)=\frac{1}{-1}=-1$
so, $-\tan (135)=1$
6) $\csc \left(\frac{-11 \pi}{3}\right) \quad \begin{aligned} & \text { coterminal } \\ & \text { angle }\end{aligned}$ $-\frac{11 \pi}{3}+\frac{12 \pi}{3}=\frac{\pi}{3}$

8) $-\cot \left(\frac{14 \pi}{3}\right)$
$\frac{14 \pi}{3}-\frac{12 \pi}{3}=\frac{2 \pi}{3}$
$\cot \left(\frac{2 \pi}{3}\right)=\frac{-1}{\sqrt{3}}$
so, $-\cot \left(\frac{2 \pi}{3}\right)=\frac{1}{\sqrt{3}}$

9) $\csc \left(900^{\circ}\right)$
$900-360=540 \ldots$
$540-360=180$
$\csc (180)$ is undefined
7) $\cos (7 \pi)$
$7 \pi-2 \pi-2 \pi-2 \pi$
$\cos (7 \pi)=\cos (\pi)$

11) $\csc \left(-450^{\circ}\right)$
$\csc (-90)=-1$
12) $\cot \left(\frac{-29 \pi}{6}\right)$

$$
\frac{-29 \pi}{6}+\frac{36 \pi}{6}=\frac{7 \pi}{6}
$$

$$
\sin =\frac{y}{1}
$$

since $\sin (90)=1$,
then $-\sin (90)=-1$

$(0,-1)$

1) $\cos \left(0^{\circ}\right)$

2) $\tan (-\pi)$

$\tan =\frac{\mathrm{y}}{\mathrm{x}}$

0

reference angle is 0
reference angle is 0 $\cos =\frac{\text { adjacent }}{\text { hypotenuse }}=1$
Evaluating Trig Functions of Quadrantal Angles
mathplane.com SOLUTIONS

$$
\tan =\frac{\text { opposite }}{\text { adjacent }}=0
$$

4) $\sec \left(-\frac{-\pi}{2}\right)$

5) $\cot \left(180^{\circ}\right)$

$\cot =\frac{\mathrm{x}}{\mathrm{y}}$
undefined
6) $\sin \left(\frac{3-\pi}{2}\right)$

$$
\sin =y
$$

-1

reference angle is 0

$$
\cot =\frac{\text { adjacent }}{\text { opposite }}=\text { undefined }
$$

reference angle is 90
$\sin =\frac{\text { opposite }}{\text { hypotenuse }}=-1$
reference angle is 0
$\csc =\frac{\text { hypotenuse }}{\text { Opposite }}=$ undefined

1) $\mathrm{t}=\frac{7 \pi}{4}$

2) $t=\frac{-\pi}{2}$

3) $t=\frac{-2 \hat{\psi}}{3}$

Option: add 2Π
\rightarrow coterminal angle $\frac{4 T}{3}$

5) $\mathrm{t}=\frac{2 \pi^{-}}{7}$ (calculator)

$$
\begin{array}{r}
\sin \left(\frac{2 \pi^{-}}{7}\right) \\
\sin (51.4)=\frac{y}{1} \\
y=.78 \\
\cos (51.4)=\frac{x}{1} \\
x=.62
\end{array}
$$

Hope this introduction helps.
If you have questions, suggestions, or requests, let us know. Good luck!

Also, more trig and math resources at Mathplane Express for mobile at Mathplane.ORG

One more question....
What is the exact value of $\sin (-210)$?

Answer on the next page...

What is the exact value of $\sin \left(-210^{\circ}\right)$?

Note: the 'direction' of the angle is clock-wise...

