Triangle Characteristics

Notes, Illustrations, and practice quiz (\& Solutions)

Topics include classification of triangles, polygons, inequality
theorem, restrictions, perimeter, angle measurements, and more.

Triangle Introduction

What is it? A 2-dimensional, enclosed figure containing 3 line segments linked end to end (at the vertices).

Classification (by sides)
Scalene

(no equal sides)
Isosceles

(2 equal sides)
Equilateral

(3 equal sides)

Classification (by angles)

Right

(1 angle $=90$ degrees $)$

Acute

(all angles <90 degrees)

Obtuse

(1 angle >90 degrees)

All Triangles are 180°
The sum of the interior angles of a triangle is 180 degrees

observation: for any polygon, the sum of the interior angles is $(n-2) \times 180^{\circ}$ where n is the number of sides

Why? Because, polygons can be cut into triangles.

Examples:

$$
\begin{aligned}
& \mathrm{n}=4 \text { (sides) } \\
& (\mathrm{n}-2) \longrightarrow 2 \text { triangles } \\
& (\mathrm{n}-2) \times 180^{\circ}=360^{\circ}
\end{aligned}
$$

Interior angles of a quadrilateral add up to 360 degrees...

$$
\begin{aligned}
& \mathrm{n}=6 \text { (sides) } \\
& (\mathrm{n}-2) \longrightarrow 4 \text { triangles } \\
& (\mathrm{n}-2) \times 180^{\circ}=720^{\circ}
\end{aligned}
$$

The sum of the interior angles of a hexagon is 720 degrees.
observation: for any regular polygon, each interior angle is

$$
\frac{(\mathrm{n}-2) \times 180^{\circ}}{\mathrm{n}}
$$

Example:

$$
\begin{aligned}
& \mathrm{n}=5 \\
& (\mathrm{n}-2) \times 180^{\circ}=540^{\circ} \\
& \text { then, } \frac{180(\mathrm{n}-2)}{\mathrm{n}}=108^{\circ}
\end{aligned}
$$

Each interior angle of a regular pentagon is 108 degrees.

Definition: The sum of the lengths of any 2 sides of a triangle is always greater than the length of the 3rd side.

Why? Because, if a 3rd side is too long, then the others can't reach!

Example:

This cannot be a triangle...

Example: If $\mathrm{A}=6$ and $\mathrm{B}=13$, what are the possible lengths of side C ?
The get the 3 rd side, "find the sum \& the difference"....

C is the largest side: ("the sum")

$$
13+6=19
$$

B is the largest side: ("the difference"

$$
13-6=7
$$

Note: If C were equal to 7 or 19, then we would have a line segment..

If $\mathrm{C}>19$, then
A and B won't touch!

$$
\begin{aligned}
& \mathrm{A}=6 \\
& \mathrm{~B}=\mathrm{C}=13
\end{aligned}
$$

Case 2: isosceles

B
Case 3: B is the largest side

$$
\begin{gathered}
\mathrm{A}=6 \quad \mathrm{~B}=13 \\
7<\mathrm{C}<13
\end{gathered}
$$

If $\mathrm{C}<7$, then
A and C won't touch!

Practice Exercises- -

Classifying and identifying Triangles
I. Identify the following:

sides: \qquad
angles:
sides: \qquad
angles: \qquad

Sides: Equilateral, Isosceles, Scalene
Angles: Right, Acute, Obtuse
sides:
angles: \qquad
II. Classify the following triangles:
"30-60-90 triangle":
sides: \qquad
angles: \qquad
"45-45-90 triangle": sides:
angles: \qquad
"60-60-60 equiangular triangle":
sides: \qquad
angles: \qquad
III. Always, Sometimes, or Never?

1) An equilateral triangle is obtuse.
2) A right triangle is isosceles.
3) The sum of the interior angles of an obtuse triangle is 180°.

Triangle Characteristics: Applications Quiz

1) If the perimeter of an equilateral triangle is 18 feet, then what are the lengths of each side?
2) What is the measure of exterior angle X ?

3) If $\triangle A B C$ is isosceles and right, what are the measures of each angle?
4) In diagram A , what are the measures of angles D, E, and F ?

*5) 'Trick question': If 2 sides of an isosceles triangle are 6 and 10 inches, what is the length of the 3rd side?
**6) Challenge question: If 2 sides of a triangle are 7 and 12 inches, what is the length of the 3rd side?
5) Given $\triangle \mathrm{ABC} \stackrel{N}{=} \triangle \mathrm{DEF}$

In triangle ABC , which side is the smallest?

$$
\begin{aligned}
& \overline{\mathrm{AC}}=x^{2} \\
& \overline{\mathrm{DE}}=8 \mathrm{x}-11 \\
& \overline{\mathrm{FD}}=2 \mathrm{x}+3 \\
& \overline{\mathrm{FE}}=4 \mathrm{x}+6
\end{aligned}
$$

2) Given $\overline{\mathrm{KM}}$ is a perpendicular bisector of $\overline{\mathrm{JL}} ; \overline{\mathrm{JL}}=5 \mathrm{x}-5$

What is the length of $\overline{\mathrm{JM}}$?

3) Always, Sometimes, or Never?

Two triangles are congruent if
2 sides and 1 angle are congruent to corresponding parts of another.
4) If the perimeter of an equilateral triangle is $6 y+18$ and one side is $4 y-14$, what is the perimeter?
5) In $\triangle \mathrm{ABC}$,
if $\overline{\mathrm{AC}}>\overline{\mathrm{BC}}>\overline{\mathrm{AB}}$, list the 3 angles in order of size (from largest to smallest)
6) In Circle C, $\mathrm{PS} \perp \mathrm{SR}$

$$
\angle \mathrm{P}=38^{\circ}
$$

Find a) $\angle \mathrm{PSC}$
b) $\angle \mathrm{R}$

7) Given: $\overline{\mathrm{AC}}>\overline{\mathrm{AB}}$

What are the restrictions of x ?

8) Find x
9) Find y

10) Find z

11) The vertices of a triangle are $(2,-6)(5,-2)(7,-6)$ Is this triangle scalene, isosceles, or equilateral?
13)

14)

a) 180
b) 240
c) 270
d) 360
e) 450
$\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}+\mathrm{e}=$?
15) The measure of one angle in a right triangle is 5 times the measure of another. What are the angles?
16) If the perimeter of this isoceles triangle is less than 45 , which side is the base?

17) Given: $\quad \angle B=3 x+10$

$$
\angle \mathrm{C}=46-3 \mathrm{y}
$$

$\triangle \mathrm{ABC}$ is an isosceles triangle with base $\overline{\mathrm{BC}}$
What is the measure of angle A?

18) $\triangle \mathrm{DEF}$ is an isosceles triangle with base $\overline{\mathrm{DE}}$

Determine the measure of the angles and the measure of the sides...

19) $\overline{\mathrm{TA}}=\overline{\mathrm{AK}}$

Find the measures of all the angles.

20) Are the points $(1,0)(7,3)(-1,4)$ the vertices of a right triangle?

Justify using the distance formula:

Justify using slope:
21) Assume $(-3,0)$ and $(5,0)$ are vertices of an isosceles right triangle. Can you identify the 3rd vertex? (there are 6 possibilities)
22) If $\triangle \mathrm{RHT}$ is a right triangle, and T is on the x -axis, what is T ? (note: figure not drawn to scale!)

23) In $\triangle X Y Z$,

$$
\begin{aligned}
& \overline{\mathrm{XY}}=5 \\
& \overline{\mathrm{XZ}}=12 \quad \text { list angles from largest to smallest.... } \\
& \overline{\mathrm{YZ}}=6
\end{aligned}
$$

CHALLENGE QUESTION:

Find angle d:

Classifying and identifying Triangles

SOLUTIONS

I. Identify the following:

Sides: Equilateral, Isosceles, Scalene
Angles: Right, Acute, Obtuse

sides: scalene
angles: acute
$\triangle \mathrm{ABC}$ where $\quad \mathrm{m} \angle \mathrm{A}=25^{\circ}{ }^{\circ}$

II. Classify the following triangles:
"30-60-90 triangle":

"45-45-90 triangle": sides: isosceles
angles: right

sides: isosceles
angles: acute

"60-60-60 equiangular triangle":

sides: equilateral
angles: acute

III. Always, Sometimes, or Never?

1) An equilateral triangle is obtuse. NEVER

2) A right triangle is isosceles.

SOMETIMES (if it is a 45-45-90, then it is right)
3) The sum of the interior angles of an obtuse triangle is 180°.
ALWAYS
Sum of interior angles of ALL triangles is 180°

SOLUTIONS

1) If the perimeter of an equilateral triangle is 18 feet, then what are the lengths of each side?

Since it is an equilateral triangle, all sides are the same.

$$
\mathrm{A}=\mathrm{B}=\mathrm{C}
$$

2) What is the measure of exterior angle X ?

Since the triangle has 3 equal sides, it must be equilateral. Therefore, all angles are 60°

$$
\begin{aligned}
& \text { (supplementary angles) } \\
& \mathrm{X}+60=180 \\
& \mathrm{X}=120^{\circ} \\
& \hline
\end{aligned}
$$

3) If $\triangle \mathrm{ABC}$ is isosceles and right, what are the measures of each angle?
B

(Isosceles) $\overline{\mathrm{AB}}=\overline{\mathrm{BC}}$
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180$
(Right) $\angle \mathrm{B}=90^{\circ}$

$$
\angle \mathrm{A}=\angle \mathrm{C}=45^{\circ}
$$

4) In diagram A, what are the measures of angles D, E, and F ?

Sum of angles in a \triangle is 180 ..
And, vertical angles are congruent.
Therefore, $\mathrm{F}=80$
$\triangle \mathrm{DEF} \frac{\mathrm{is} \text { isosceles because }}{\mathrm{DF}}=\overline{\mathrm{EF}} \quad$ so, $\angle \mathrm{D}=\angle \mathrm{E}=50^{\circ}$

*5) 'Trick question': If 2 sides of an isosceles triangle are 6 and 10 inches, what is the length of the 3 rd side?

**6) Challenge question: If 2 sides of a triangle are 7 and 12 inches, what is the length of the 3rd side?

If largest side is 12 inches, then X must be larger than 5

12

If X is the largest side, then X cannot be larger than 19

The length of the third side:

$$
5<X<19 \text { inches }
$$

12

1) Given $\triangle \mathrm{ABC} \stackrel{N}{=} \triangle \mathrm{DEF}$

In triangle $A B C$, which side is the smallest?

$$
\begin{aligned}
& \overline{\mathrm{AC}}=x^{2} \\
& \overline{\mathrm{DE}}=8 x-11 \\
& \overline{\mathrm{FD}}=2 x+3 \\
& \overline{\mathrm{FE}}=4 x+6
\end{aligned}
$$

Corresponding
Parts

$$
\begin{aligned}
& \mathrm{AC}=\mathrm{DF} \\
& \mathrm{x}^{2}=2 \mathrm{x}+3
\end{aligned}
$$

Congruent
Triangles
Congruent

$$
\begin{gathered}
x^{2}-2 x-3=0 \\
(x-3)(x+1)=0
\end{gathered}
$$

$$
x=-1,3
$$

$$
\begin{aligned}
\text { Since } \mathrm{x}=3, \mathrm{DF} & =\mathrm{AC}=9 \\
\mathrm{EF} & =\mathrm{BC}=18 \\
\mathrm{DE} & =\mathrm{AB}=13
\end{aligned}
$$

2) Given $\overline{\mathrm{KM}}$ is a perpendicular bisector of $\overline{\mathrm{JL}} ; \overline{\mathrm{JL}}=5 \mathrm{x}-5$ What is the length of $\overline{\mathrm{JM}}$?

Quick proof: $\mathrm{KM} \cong \mathrm{KM}$ (reflexive property)
$\mathrm{JM} \xlongequal{\cong} \mathrm{ML}$ (def. bisector)
JMK and LMK are right angles
(def. of perpendicular)
$\triangle \mathrm{JMK} \cong \triangle$ LMK \quad (Side-Angle-Side or HL$)$
Therefore, $\overline{\mathrm{JK}} \stackrel{\sim}{=} \overline{\mathrm{KL}} \quad$ CPCTC

$$
\begin{aligned}
10 \mathrm{x}+3 & =13 \mathrm{x}-12 \\
15 & =3 \mathrm{x} \\
\mathrm{x} & =5
\end{aligned}
$$

$$
\text { If } x=5 \text {, then } \overline{\mathrm{J}}=20 \text { and } \overline{\mathrm{JM}}=10
$$

3) Always, Sometimes, or Never?

Two triangles are congruent if
2 sides and 1 angle are congruent to corresponding parts of another.
SOMETIMES... If the included angles are congruent, then the triangles must be congruent.
 not congruent
4) If the perimeter of an equilateral triangle is $6 y+18$ and one side is $4 y-14$, what is the perimeter?

If one side is $4 y-14$, then all 3 sides are $4 y-14$

4y-14

Therefore, the perimeter is $3(4 y-14)$

$$
\begin{aligned}
6 y+18 & =3(4 y-14) \\
6 y+18 & =12 y-42 \\
60 & =6 y \\
y & =10
\end{aligned}
$$

Since $y=10$, each side is 26 and the perimeter is 78
5) In $\triangle \mathrm{ABC}$,

SOLUTIONS
Triangle Properties Questions
if $\overline{\mathrm{AC}}>\overline{\mathrm{BC}}>\overline{\mathrm{AB}}$, list the 3 angles in order of size (from largest to smallest)

Draw a diagram and assign values:

Since B is opposite the largest side, it is the largest angle...
And, since C is opposite the smallest side, it is the smallest angle...

B (largest), A (middle), C (smallest)
6) In Circle C, $\mathrm{PS} \perp \mathrm{SR}$

$$
\angle \mathrm{P}=38^{\circ}
$$

Find a) \lfloor PSC
b) $\angle \mathrm{R}$

If $\angle \mathrm{P}=38$ degrees then, $\angle \mathrm{PSC}=38$ degrees

If $\angle \mathrm{PSC}$ is 38 degrees, then $\angle \mathrm{CSR}=52$ degrees

Therefore, $\angle \mathrm{R}=52$ degrees

7) Given: $\overline{\mathrm{AC}}>\overline{\mathrm{AB}}$

What are the restrictions of x ?
If $\mathrm{AC}>\mathrm{AB}$, then $\angle \mathrm{B}>\angle \mathrm{C}$

$$
\begin{aligned}
5 x-42 & >18+x \\
4 x & >60 \\
x & >15
\end{aligned}
$$

Since the sum of interior angles of triangle is $180, \mathrm{~B}+\mathrm{C}<180$

$$
\begin{aligned}
5 \mathrm{x}-42+18+\mathrm{x} & <180 \\
6 \mathrm{x}-24 & <180 \\
6 \mathrm{x} & <204 \\
\mathrm{x} & <34
\end{aligned}
$$

8) Find x

Sum of angles must be 180 degrees

$$
\begin{aligned}
a+a+40 & =180 \\
2 \mathrm{a} & =140 \\
\mathrm{a} & =70
\end{aligned}
$$

Triangle Properties Questions

SOLUTIONS

since sides are congruent, the opposite angles are congruent...
Since $\mathrm{a}=70, \mathrm{~b}=110$ (supplementary)
If $b=110$, then $x+x=70 \ldots$ therefore $x=35$
9) Find y
"sides-angles theorem", so other angle is $68 \ldots$ therefore, 3 rd angle is 44 degrees
(vertical angles, so other angle is 44 degrees)

$$
\begin{aligned}
y+y+44 & =180 \\
2 y & =136 \\
y & =68
\end{aligned}
$$

note: the 2 isosceles triangles are similar
10) Find z

$$
\begin{aligned}
& b+b+42=180 \\
& 2 b=138 \\
& b=69 \\
& a=b \quad \text { (vertical angles) } \\
& a=69 \\
& \text { then, } z=42
\end{aligned}
$$

note: the 2 triangles are similar (isosceles)
11) The vertices of a triangle are $(2,-6)(5,-2)(7,-6)$

Is this triangle scalene, isosceles, or equilateral?
To determine sides, use the distance formula:

$$
\begin{aligned}
& (2,-6) \text { to }(5,-2) \quad \begin{aligned}
& \mathrm{d}=\sqrt{(5-2)^{2}+(-2-(-6))^{2}} \\
&=\sqrt{9+16}=5 \\
&(5,-2) \text { to }(7,-6) \quad \begin{aligned}
& \mathrm{d}=\sqrt{(7-5)^{2}+(-6-(-2))^{2}} \\
&=\sqrt{4+16}=2 \sqrt{5} \\
&(7,-6) \text { to }(2,-6) \quad \begin{array}{l}
\mathrm{d}
\end{array} \\
&=5
\end{aligned} \text { (horizontal line segment) }
\end{aligned}
\end{aligned}
$$

Since 2 sides are the same length, the triangle is isosceles
12)

13)

14)

$a+b+c+d+e=?$

Since interior angles add up to 180 :
$45+43+B=180$
$B=92$
Angle along line must add up to 180 :

$$
92+50+x=180 \quad x=38
$$

$$
\text { then } \mathrm{y}=52
$$

5 triangles, so the sum of the interior angles must be $5 \times 180=900$
We know there are 5 (small) 90 degree angles..
And, the sum of the lower angles is one (large) 90 degree angle.. So, we know the 6 angles add up to $540 \ldots$
therefore, the remaining angles are $360 \ldots$
a) 180
b) 240
c) 270
d) 360
e) 450
15) The measure of one angle in a right triangle is 5 times the measure of another. What are the angles?

16) If the perimeter of this isoceles triangle is less than 45 , which side is the base?

$$
\begin{aligned}
& \text { If } 10 \text { is the base, then } \\
& \begin{aligned}
x+7 & =2 x-8 \\
x & =15
\end{aligned}
\end{aligned}
$$

and, the perimeter is $10+22+22=54$
($54>45$, so 10 is not the base)

If $x+7$ is the base, then

$$
10=2 x-8
$$

$$
x=9
$$

and, the perimeter is $10+16+10=36$

If $2 x-8$ is the base, then
$10=x+7$
$\mathrm{x}=3$
and, the perimeter is $10+10+(-2)$
***a side cannot have a length negative 2
17) Given: $\angle \mathrm{B}=3 \mathrm{x}+10$ Solutions

$$
\angle \mathrm{C}=46-3 \mathrm{y}
$$

$\triangle \mathrm{ABC}$ is an isosceles triangle with base $\overline{\mathrm{BC}}$
What is the measure of angle A?

18) $\triangle \mathrm{DEF}$ is an isosceles triangle with base $\overline{\mathrm{DE}}$

Determine the measure of the angles and the measure of the sides...

$$
\begin{aligned}
& 5 x+1=-4 y \\
& 5 x+4 y=-1
\end{aligned}
$$

$$
\mathrm{y}=-4
$$

$$
20 x+3=-12 y+15
$$

and

$$
20 \mathrm{x}+12 \mathrm{y}=12
$$

$$
x=3
$$

$$
5 x+3 y=3
$$

$$
\begin{aligned}
& \text { angles are } 63,63 \text {, and } 54 \\
& \text { and the sides are } 16 \text { and } 16 \ldots
\end{aligned}
$$

NOTE: The base side requires trignometry to determine its length....
19) $\overline{\mathrm{TA}}=\overline{\mathrm{AK}}$

Find the measures of all the angles.

Since $T A=A K$, angle T and angle K are congruent (because if congruent angles, then congruent sides)

$$
\text { angle } T+\text { angle } K+\text { angle } A=180 \text { degrees }
$$

$4 x+8+4 x+8+3 x+32=180$
$11 \mathrm{x}=132$

$$
\begin{aligned}
& \text { Angle } \mathrm{T}=56 \\
& \text { Angle } \mathrm{K}=56 \\
& \text { Angle } \mathrm{A}=68
\end{aligned}
$$

20) Are the points $(1,0)(7,3)(-1,4)$ the vertices of a right triangle?

Justify using the distance formula:	Find distance between points then, apply Pythagorean
	Theorem

Justify using slope:

YES, it's a right triangle
find slope between points.. If any have opposite reciprocal - i.e. perpendicular then, there is a right angle

SOLUTIONS
$(1,0)$ to $(7,3) \quad \sqrt{45} \quad$ a
$(1,0)$ to $(-1,4) \sqrt{20} \quad \mathrm{~b}$
$(7,3)$ to $(-1,4) \sqrt{65} \quad \mathrm{c}$
slope of $\mathrm{b}:-2$ slope of a: $1 / 2$
21) Assume $(-3,0)$ and $(5,0)$ are vertices of an isosceles right triangle. Can you identify the 3rd vertex? (there are 6 possibilities)

Pythagorean Theorem
$a^{2}+b^{2}=c^{2}$
22) If $\triangle \mathrm{RHT}$ is a right triangle, and T is on the x -axis, what is T ? (note: figure not drawn to scale!)

$$
\begin{aligned}
& -2=(2 / 5) \mathrm{x}-18 / 5 \\
& 8 / 5=(2 / 5) \mathrm{x}
\end{aligned}
$$

$$
x=4 \quad(4,0)
$$

23) In $\triangle X Y Z$,

$$
\begin{aligned}
& \overline{\mathrm{XY}}=5 \\
& \overline{\mathrm{XZ}}=12 \\
& \overline{\mathrm{YZ}}=6
\end{aligned}
$$

$$
\overline{X Z}=12 \quad \text { list angles from largest to smallest.... }
$$

NONE, because the triangle does not exist!!

Find angle d:

(big triangle)

$$
\begin{aligned}
& 2 x+2 y+30^{\circ}=180^{\circ} \\
& 2 x+2 y=150^{\circ} \\
& x+y=75^{\circ}
\end{aligned}
$$

ANSWER
(small triangle)

$$
\begin{gathered}
x+y+d=180^{\circ} \\
75^{\circ}+d=180^{\circ} \\
d=105^{\circ}
\end{gathered}
$$

Thanks for visiting the site. (Hope it helped!)
If you have questions, suggestions, or requests, let us know...
Cheers...

www.mathplane.com

6 more triangle questions:

1) What is the name of a triangle where all sides have different lengths?
2) A triangle has sides of length 8 and 13 . What are the possible lengths of the 3rd side?
3) Two sides of an isosceles triangle are 5 and 7 feet. What is the perimeter of the triangle?
4) DEF is a right triangle. If angle E is 37 degrees, what are the measures of D and F ?
5) Where do the altitudes of a right triangle intersect?
6) If the 3 altitudes of triangle ABC intersect outside the triangle, what type of triangle is ABC ?

Answers to $\mathbf{6}$ more triangle questions:

1) Scalene Triangle
2) Length of 3rd side (S):
$5<S<21$ (i.e. any length between 5 and 21)
3) a) $5+5+7=17 \mathrm{OR}$,
b) $7+7+5=19$
4) $\mathrm{D}=53 \mathrm{~F}=90 \mathrm{OR}$,

$$
\mathrm{F}=53 \quad \mathrm{D}=90
$$

5) At the right angle vertex

(3 altitudes of right triangle)
6) ABC is Obtuse

(3 altitudes of obtuse triangle)
