
SAT MATH SUBJECT LEVEL 2

TOPICS TO KNOW

A list of suggested concepts from Algebra, Geometry, Trigonometry, Pre-Calculus, and Statistics

Presented with sample questions (and solutions)

Mathplane.com

Warm-up: SAT Basic Topics to Know

SAT Topics to Know

1) Which of the following is NOT true:

Classifying Numbers

- a) The set of integers is larger than the set of natural numbers
- b) All integers are real numbers
- c) $\sqrt{3}$ is irrational
- d) A repeating decimal, such as .292929... is irrational
- e) There are an infinite number of rational numbers between 10 and 20

2) $3 \cdot 4^2 - \frac{(9-3)}{2} \cdot 4 =$

PEMDAS/Order of Operations

- a) 12
- b) 36
- c) 156
- d) 164
- e) 180
- 3) How many prime factors of 60 are there?

Prime factorization

- a) 1
- b) 2
- c) 3
- d) 4
- e) 5
- 4) Find the greatest common factor and least common multiple of 10 and 25.

GCF and LCM

- a) LCM: 10 GCF: 25
- b) LCM: 50 GCF: 5
- c) LCM: 250 GCF: 50
- d) LCM: 1 GCF: 250
- e) LCM: 10 GCF: 5
- 5) What is the next term in this geometric sequence: 1/2, 1/4 ?

Sequences

- a) 1/6
- b) 1/8
- c) 0
- d) 1/16
- e) 4

a)	3		
b)	30		
c)	75		
d)	133		
e)	300		
7) Wh	at is the median of	set A? $A = \{5, 0, -7, 8, -3, 8, 3\}$	Mean, Median, Mode, and Range
a) b) c) d) e)	-7 8 3		
		arbles: 4 blue, 7 white, and 9 red. by of picking 2 white marbles (without replacement)	Probability ?
a)	13/20		
b)	21/190		
c) 4	49/400		
d) :	21/200		
e) 9	9/19		
3	diner serves lunch w 3 beverages 4 entrees 5 sides	with the following number of choices: How many different meals could you order having 1 beverage, 1 entree, and 2 different sides?	Counting Principles (combinations/permutations)
a) 1 b) 1 c) 6 d) 2 e) 3	16 50 240		
	$3x^2y^3)^2 =$		Exponents
	$3x^4y^5$		
b)	3x ⁴ y ⁶		
c)	9 x ⁴ y ⁵		
d)	9x ⁴ y ⁶		
e)	9xy ¹⁰		

Percentages

6) What percent of 20 is 15?

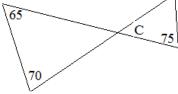
11) (x + 1) is a factor of $2x^2 - 8x - 10$. What is the other binomial factor? Factoring a) 2 b) 2x - 5c) x + 10d) x - 5e) 2x - 812) $(2x-7)^2 =$ FOIL a) 4x + 49b) $4x^2 + 49$ c) $4x^2 + 14x + 49$ d) $4x^2 - 28x + 49$ e) $4x^2 - 49$ 13) f(x) = 2x - 7 $g(x) = x^2$ Function notation f(g(-3)) =a) -26 b) -19 c) -13 d) 11 e) 139 14) y = 3|x - 5| + 2Absolute Value If the output y = 8, then what is x? a) 7 b) 11 c) 3, 7 d) 18 e) 8 15) What is the y-intercept for the parabola $y = (x - 6)^2 + 3$? Parabolas a) (0, -6)

b) (0, 3) c) (0, 6) d) (0, 36) e) (0, 39) 16) What is the slope of a line parallel to 2x + 3y = 12?

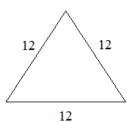
Linear equations

- a) 2
- b) -2
- c) -2/3
- d) 3/2
- e) 4
- 17) A circle's diameter has endpoints at (3, 4) and (8, -1). What is the length of the diameter?

Distance formula

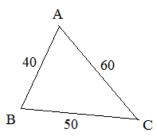

- a) 10
- b) $5\sqrt{2}$
- c) 8
- d) $\sqrt{34}$
- e) 5
- 18) The midpoint (M) of line segment \overline{AB} is (1, 6). If point A is (-3, 14), what is the coordinate of point B?

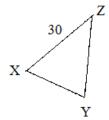
Midpoint formula


- a) (-1, 10)
- b) (5, -2)
- c) (-7, 22)
- d) (-2, 20)
- e) (3, 7)
- 19) What is the measure of angle C?

- - a) 45 b) 65
 - c) 75 d) 135
 - e) 140
- 20) What is the altitude (height) of the equilateral triangle?

- a) 12
- b) 15
- c) 6
- d) $6/\sqrt{3}$
- e) $12\sqrt{2}$

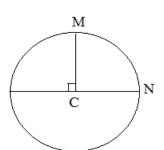

Triangles, Pythagorean Theorem, and special right triangles


Triangles and Intersecting lines

21) ∆ABC ≈ ∆XYZ

What is measure of \overline{YZ} ?

- a) 20
- b) 25
- c) 35
- d) 45
- e) 80



Ratios and Similarity

22) What is the arc length of \widehat{MN} ?

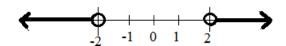
$$\overline{MC} = 6$$

- a) 37T
- b) 6 ∏
- c) 9 TT
- d) 12 TT
- e) 36[™]



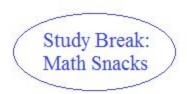
Circles, Arc Length, and

Sector Area


23) If the perimeter of ABCD is 28, what is the area?

- a) 20
- b) 27
- c) 36
- d) 45
- e) 63

Polygons: perimeter and area


24) Describe the number line inequality:

- a) x > 2 and x < -2
- b) x > 2 or x < -2
- c) $x \ge 2$ and $x \le -2$
- d) $x \ge 2$ or $x \le -2$
- e) -2 < x < 2

Inequalities

Preferable to ordinary computer cookies ...

Essential part of a well-rounded, academic diet.

Try with (t), or any beverage...

Also, look for Honey Graham Squares in the geometry section of your local store...

More Advanced Topics: Level 2

1) If $f(x) = \frac{2x+5}{2-5x}$ what value does f(x) approach as x gets infinitely larger?

Limits and Asymptotes

- a) -2/5
- b) 0
- c) 2/5
- d) 1
- e) 5/2
- 2) In a standard coordinate plane, the equation $(x + 3)^2 + (y 4)^2 = 100$ is a circle. What is the distance from the center of the circle to the origin?

Coordinate Geometry (Distance & Midpoint)

- a) √7
- b) √12
- c) 5
- d) 7
- e) 10
- 3) Two dice are rolled. What is the probability that their sum is less than 4?

Probability

- a) 1/3
- b) 1/4
- c) 1/6d) 1/12
- e) 1/18
- 4) The lines 2x + 3y = 12 and -2x Ky = 6 are perpendicular for what value of K?

Linear systems

- a) -4/3
- b) -3/2
- c) -1/2
- d) 1/2 e) 3/2
- 5) The range of y = -|x + 2| + 5

Domain & Range of Functions

- a) y ≤ -2
- b) $y \le 2$
- c) $y \le 5$
- d) $y \ge 2$
- e) y <u>> 5</u>

6) $f(x) = -2x^2$ is translated 3 units to the right and 1 unit up.

If the resulting graph is g(x), then what is g(-1)?

- a) -31
- b) -24
- c) -7
- d) -4
- e) 0
- 7) A sequence is (recursively) defined as $a_1 = 0$

What is a 6?

Sequences and Series

Functions, translation, and

transformation

a) 6

 $a_2 = 1$

b) 11

and, for n > 2

c) 20

d) 31

 $a_{n} = a_{n-1} + 6a_{n-2}$

- e) 55
- Matrices and Tables 8) The table shows the number of math books sold during the last 3 days. The prices of geometry, algebra, and trigonometry are \$57, \$47 and \$74 respectively. Which of the following matrices gives the total revenue, in dollars, from the books for each of the last 3 days?

	saturday	sunday	monday
geometry	28	7	40
algebra	20	11	27
trigonometry	7	4	30

a)
$$\begin{bmatrix} 28 & 7 & 40 \\ 20 & 11 & 27 \\ 7 & 4 & 30 \end{bmatrix} \begin{bmatrix} 57 & 47 & 74 \end{bmatrix}$$
 b)
$$\begin{bmatrix} 57 & 47 & 74 \end{bmatrix} \begin{bmatrix} 28 & 7 & 40 \\ 20 & 11 & 27 \\ 7 & 4 & 30 \end{bmatrix}$$

c)
$$\begin{bmatrix} 57 \\ 47 \\ 74 \end{bmatrix}$$
 $\begin{bmatrix} 28 & 7 & 40 \\ 20 & 11 & 27 \\ 7 & 4 & 30 \end{bmatrix}$

$$\begin{bmatrix} 28 & 7 & 40 \\ 20 & 11 & 27 \\ 7 & 4 & 30 \end{bmatrix} \begin{bmatrix} 57 \\ 47 \\ 74 \end{bmatrix}$$

$$\begin{bmatrix} 57 \\ 47 \\ 74 \end{bmatrix} \begin{bmatrix} 28 & 7 & 40 \\ 20 & 11 & 27 \\ 7 & 4 & 30 \end{bmatrix} \quad \begin{array}{c} d) \\ \begin{bmatrix} 28 & 7 & 40 \\ 20 & 11 & 27 \\ 7 & 4 & 30 \end{bmatrix} \begin{bmatrix} 57 \\ 47 \\ 7 & 4 & 30 \end{bmatrix} \begin{bmatrix} 6) \\ 47 \\ 74 \end{bmatrix} \quad \begin{array}{c} e) \\ 57 \\ 74 \end{bmatrix} \quad \begin{array}{c} 28 & 7 & 40 \\ 20 & 11 & 27 \\ 7 & 4 & 30 \end{bmatrix} + 74 \begin{bmatrix} 28 & 7 & 40 \\ 20 & 11 & 27 \\ 7 & 4 & 30 \end{bmatrix} + 74 \begin{bmatrix} 28 & 7 & 40 \\ 20 & 11 & 27 \\ 7 & 4 & 30 \end{bmatrix}$$

9) If integers n > 3 and p > 3, how many pairs (n, p) satisfy the inequality 2n + 2p < 20?

Miscellaneous, logic, numbers, arithmetic

- a) 3
- b) 4
- c) 5
- d) 6
- e) 7

- 10) If $\sin x = \frac{-1}{2}$ and $\tan x > 0$, then x =
 - a) $-\frac{1}{6}$
 - b) $\frac{1}{6}$
 - c) $\frac{51}{6}$
 - d) 777
 - e) 1117
- 11) The point (2, -1, 0) lies on the
 - a) y-axis
 - b) z-axis
 - c) xy-plane
 - d) xz-plane
 - e) yz-plane
- 12) If $ax^3 + bx^2 + c$ is divided by (x 3), then the remainder is:
 - a) -27a + 9b + c
 - b) -27a 9b
 - c) 27a + 9b + c
 - d) 27a + 9b
 - e) -27a + 9b
- 13) What are the polar coordinates of a point with (-3, 3) rectangle coordinates?
 - a) (3, 135°)
 - b) (-3, 135°)
 - c) $(3\sqrt{2}, 45^{\circ})$
 - d) $(3\sqrt{2}, 135^{\circ})$
 - e) $(-3/\sqrt{2}, 45^{\circ})$
- 14) Let log(x) = 3 and log(y) = 5; Find $log(x^2 y)$
 - a) 11
 - b) 14
 - c) 15
 - d) 28
 - e) 45

Trigonometry

3-Dimension Coordinate Space

Polynomial Roots and Theorems

Polar coordinates

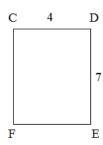
Logarithms

- 15) Find (5+2i)(5-2i) i^2
- $i^2 = -1$

Complex Numbers

- a) 25 4i
- b) 25 20i
- c) 21
- d) 29
- e) 0
- 16) The length of the <u>major axis</u> in the ellipse $4(x+5)^2 + 9y^2 = 36$ is

Conics


- a) 3
- b) 4
- c) 5
- d) 6
- e) 9
- 17) $\cos 2x + \cos x = 0$ On the interval [0, 2], x =

Trig Identities

- a) T
- b) $\frac{1}{2}$, $\frac{3}{2}$
- c) $\frac{1}{3}$, 1, $\frac{5}{3}$
- d) $2\frac{1}{3}$, $\frac{4}{3}$
- e) $2\frac{1}{3}$, 1, $\frac{4}{3}$
- 18) If rectangle CDEF is rotated about side DE, it creates a cylinder of volume:

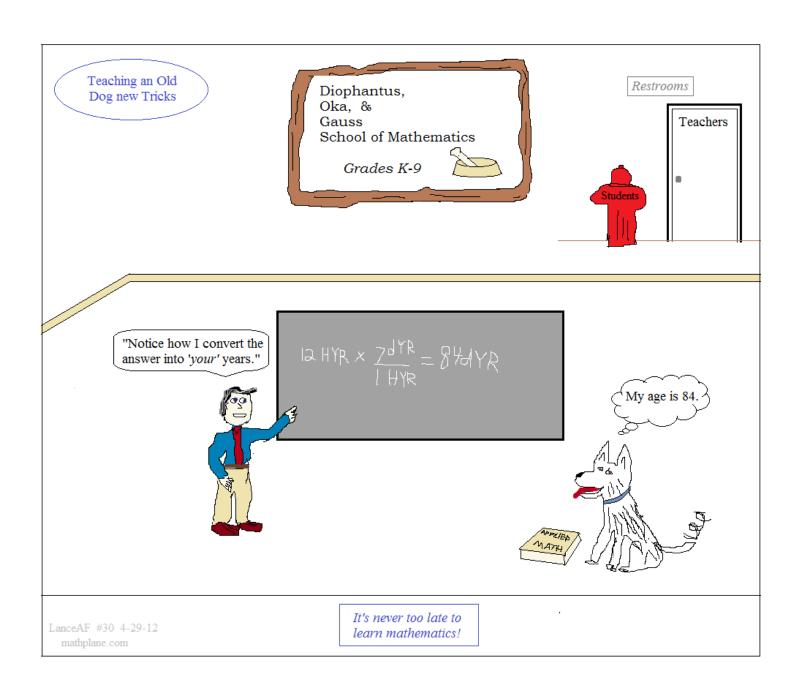
- a) 28 TT
- b) 56 竹
- c) 98刊
- d) 112 T↑
- e) 196 T

19) Tom can paint a fence in 5 hours. Huck can paint a fence in 8 hours. If they work together, how long would it take for them to paint *three* fences?

Word Problems

- a) 3 hours 5 minutes
- b) 6 hours 30 minutes
- c) 9 hours 14 minutes
- d) 10 hours 20 minutes
- e) 11 hours 42 minutes

20) u = <3, -2> v = <4, 1> The magnitude of u + v is


Vectors

- a) 6
- b) 10
- c) 5/\\\\/2
- d) 4 \sqrt{3}
- e) < 7, -1 >
- 21) A line has the parametric equation x = t + 5 and y = t + 10. What is the slope of the line?
- Parametric Equations

- a) 1
- b) 2
- c) 5
- d) 10
- e) 50
- 22) The 4th term in the binomial expansion $(m-p)^{7}$ is

Binomial Expansion

- a) 4mp
- b) 35mp
- c) $35m^4 p^3$
- d) $-35m^4 p^3$
- e) $-70m^4p^3$

SOLUTIONS

SAT Topics to Know ANSWERS

1) Which of the following is NOT true:

a) The set of integers is larger than the set of natural numbers

b) All integers are real numbers

c) $\sqrt{3}$ is irrational

d) A repeating decimal, such as .292929... is irrational

e) There are an infinite number of rational numbers between 10 and 20

Classifying Numbers

$$.2929... = \frac{.29}{.99}$$

any number that can be expressed as a fraction is rational

2) $3 \cdot 4^2 - \frac{(9-3)}{2} \cdot 4 = 3 \cdot 16 - \frac{6}{2} \cdot 4$

a) 12

b) 36

c) 156

d) 164

e) 180

order of operations: parentheses

exponents multiplication/ division addition/ subtraction

Prime factorization

PEMDAS/Order of Operations

3) How many prime factors of 60 are there?

b) 2 c) 3

a) 1

d) 4 e) 5

factors of 60: 1 and 60 2 and 30 3 and 20

48 - 3•4

48 - 12 = 36

of those, 2, 3, and 5 are prime..

4 and 15 5 and 12 6 and 10

Factors:

4) Find the greatest common factor and least common multiple of 10 and 25.

Multiples:

a) LCM: 10 GCF: 25 b) LCM: 50 GCF: 5

c) LCM: 250 GCF: 50

10: 1, 2, 5, 10 25: 1, 5, 25

common factors are 1 and 5 d) LCM: 1 GCF: 250

e) LCM: 10 GCF: 5

GCF: 5

10: 10, 20, 30, 40, 50, 60, ... 25: 25, 50, 75, 100, ...

common multiples include 50, 100, 150

GCF and LCM

LCM: 50 5) What is the next term in this geometric sequence: 1/2, 1/4?

Sequences

a) 1/6 The common ratio of the sequence is 1/2.. So, the

next term is $1/4 \cdot 1/2 = 1/8$ b) 1/8

c) 0

geometric sequence: 1/2, 1/4, 1/8, 1/16...

d) 1/16

arithmetic sequence would be adding -1/4... 1/2, 1/4, 0, -1/4, -1/2, -3/4, ...

e) 4

6) What percent of 20 is 15?

a) 3

$$\frac{X}{100} = \frac{15}{20}$$

b) 30

e) 300

Percentages

7) What is the median of set A? $A = \{5, 0, -7, 8, -3, 8, 3\}$

 $\frac{X}{100} = \frac{3}{4}$ X = 75

Mean, Median, Mode, and Range mean is the 'average' = $\frac{\text{total of set}}{\text{# of items}} = \frac{14}{7} = 2$

a) 5

b) -7

set A is order: -7, -3, 0, 3, 5, 8, 8

the middle term is 3

mode is 'most often' = 8

Probability

Counting Principles

(combinations/permutations)

range is amount between high and low: -7 to 8 is 15

8) A bag contains 20 marbles: 4 blue, 7 white, and 9 red. What is the probability of picking 2 white marbles (without replacement)?

a) 13/20

p(drawing first white marble) = $\frac{7}{20}$

c) 49/400

p(drawing second white marble|the first was white) = $\frac{6}{19}$

d) 21/200

 $\frac{7}{20} \cdot \frac{6}{19} = \frac{21}{190}$

9) A diner serves lunch with the following number of choices:

3 beverages

4 entrees 5 sides

How many different meals could you order

having 1 beverage, 1 entree, and 2 different sides?

a) 12

b) 16

1 beverage: 3 choices

c) 60

1 entree: 4 choices first side: 5 choices

d) 240 e) 300

second side: 4 remaining choices

number of choices: $3 \times 4 \times 5 \times 4 = 240$

10) $(3x^2y^3)^2 =$

$$3x^2y^3 \cdot 3x^2y^3 = 9x^4y^6$$

Exponents

a)
$$3x^{4}y^{5}$$

c)
$$9x^4y^5$$

```
11) (x + 1) is a factor of 2x^2 - 8x - 10. What is the other binomial factor?
                                                                                  Factoring
  a) 2
                        using GCF: 2(x^2 - 4x - 5)
  b) 2x - 5
                        then, what multiplies to -5 and adds to -4?
  c) x + 10
                                                        1 and -5
  d) x - 5
                            2(x+1)(x-5)
  e) 2x - 8
12) (2x-7)^2 =
                      (2x-7)(2x-7) =
                                                                                    FOIL
  a) 4x + 49
                               4x^2 - 14x - 14x + 49
  b) 4x^2 + 49
                                4x^2 - 28x + 49
  c) 4x^2 + 14x + 49
  d) 4x^2 - 28x + 49
   e) 4x^2 - 49
13) f(x) = 2x - 7 g(x) = x^2
                                                                                Function notation
         f(g(-3)) =
                               g(-3) = (-3)^2 = 9
   a) -26
   b) -19
                                f(9) = 2(9) - 7 = 11
   c) -13
   d) 11
   e) 139
14) y = 3|x - 5| + 2
                                                                                 Absolute Value
   If the output y = 8, then what is x?
   a) 7
                         8 = 3|x - 5| + 2 solve for x by isolating the
   b) 11
                                           absolute value..
                                                                                      2 = x - 5
                                                                                                  x = 7
                        6 = 3|x - 5|
   c) 3, 7
                                                       ... then, "split the term"
                                                                                                    x = 3
    d) 18
                         2 = |x - 5|
    e) 8
 15) What is the y-intercept for the parabola y = (x - 6)^2 + 3?
                                                                                    Parabolas
    a)(0, -6)
                        the y-intercept is where a function
    b) (0, 3)
                        crosses the y-axis..
    (0, 6)
                        In other words, the coordinate will be (0, ?)
    d) (0, 36)
                        y = (0-6)^2 + 3 = 39 so, the y-intercept is (0, 39)
    e)(0,39)
```

16) What is the slope of a line parallel to 2x + 3y = 12?

Linear equations

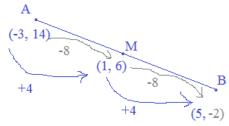
a) 2 b) -2 (parallel lines have the same slope; perpendicular lines have slopes with opposite reciprocals)

2x + 3y = 12 3y = -2x + 12 $y = \frac{-2x}{3} + 4$

- c) -2/3 d) 3/2
- e) 4
- 17) A circle's diameter has endpoints at (3, 4) and (8, -1). What is the length of the diameter?

Distance formula

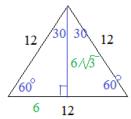
a) 10


distance formula: $d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$

 $\sqrt{(3-8)^2 + (4-(-1))^2} = \sqrt{25 + 25} = 5\sqrt{2}$

- b) 5√2
- d) √34
- e) 5
- 18) The midpoint (M) of line segment \overline{AB} is (1, 6). If point A is (-3, 14), what is the coordinate of point B?

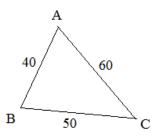
Midpoint formula

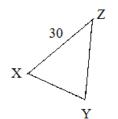

- a) (-1, 10)
- b) (5, -2)
- c) (-7, 22)
- d) (-2, 20)
- e) (3, 7)

- 19) What is the measure of angle C?
 - a) 45
 - b) 65
 - c) 75d) 135
 - e) 140

- 50 Sum of interior angles of a triangle is 180...
- Triangles and Intersecting lines
- then, C is 45 (vertical angles are congruent)

- 20) What is the altitude (height) of the equilateral triangle?
 - a) 12
 - b) 15
- c) 6 d) 6√3 e) 12 √2
- 30-60-90 right triangle:




Triangles, Pythagorean Theorem, and special right triangles

21) ∆ABC ≈ ∆XYZ

What is measure of \overline{YZ} ?

- a) 20
- b) 25
- c) 35
- d) 45
- e) 80

Ratios and Similarity

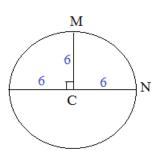
ratio:
$$\frac{AC}{XZ} = \frac{60}{30} = \frac{2}{1}$$

so,
$$\frac{BC}{YZ} = \frac{2}{1}$$
 $YZ = 25$

22) What is the arc length of MN?

$$\overline{MC} = 6$$

- a) 37T
- b) 6 ↑↑
- c) 9 TT
- d) 12 TT
- e) 36 T⊤

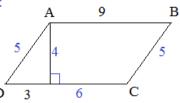

circumference of circle:

$$T$$
 (diameter) = $12T$

Since MN is 1/4 of the entire circle.

the arc length is 1/4 of the circumference:

317-

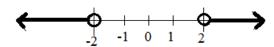

Circles, Arc Length, and Sector Area

23) If the perimeter of ABCD is 28, what is the area?

- a) 20
- b) 27
- c) 36
- d) 45
- Area of parallelogram:

- $9 \times 4 = 36$
- e) 63

Polygons: perimeter and area


$$\overline{AB} = \overline{DC}$$
 so, $\overline{DC} = 9$

Since the perimeter is 28, and the horizontal sides add to 18, then, the vertical sides are each 5

Then, recognizing the 3-4-5 right triangle, gets the height...

Inequalities

24) Describe the number line inequality:

- a) x > 2 and x < -2
- b) x > 2 or x < -2
- c) $x \ge 2$ and $x \le -2$
- d) $x \ge 2$ or $x \le -2$
- e) -2 < x < 2

If the circles were "closed",

the inequalities would be \leq and \geq

If the region between the points were shaded, the inequality would be "AND"

SOLUTIONS

1) If $f(x) = \frac{2x+5}{2-5x}$ what value does f(x) approach as x gets infinitely larger?

Limits and Asymptotes

- a) -2/5
- b) 0

rewrite the function: 2x + 5-5x + 2

- c) 2/5
- d) 1 e) 5/2

- since degree of numerator is the same as
- degree of the denominator, use the lead coefficients...
- 2) In a standard coordinate plane, the equation $(x + 3)^2 + (y 4)^2 = 100$ is a circle. What is the distance from the center of the circle to the origin?

Coordinate Geometry (Distance & Midpoint)

- a) $\sqrt{7}$
- b) $\sqrt{12}$
- The center of the circle is (-3, 4)
- c) 5

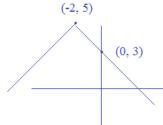
The distance to the origin is $\sqrt{(-3-0)^2+(4-0)^2} = 5$

- d) 7
- e) 10
- 3) Two dice are rolled. What is the probability that their sum is less than 4?

Probability

- a) 1/3
- b) 1/4
- c) 1/6
- d) 1/12
- e) 1/18

- Total possible ways to roll 2 dice: $6 \times 6 = 36$
- Number of outcomes less than 4: 3 (1|1 1|2 or 2|1)
 - probility = $\frac{3}{36}$
- 4) The lines 2x + 3y = 12 and -2x Ky = 6 are perpendicular for what value of K?


Linear systems

a)	-4	/3

- b) -3/2 c) -1/2
- d) 1/2
- e) 3/2
- slope of 2x + 3y = 12 3y = -2x + 12 y = -2/3x + 4 is -2/3
 - therefore, slope of perpendicular
- -2x Ky = 6
- -Ky = 2x + 6y = -2x/K 6/K
- now, set $\frac{-2}{K} = \frac{3}{2}$
 - K = -4/3

- 5) The range of y = -|x + 2| + 5
 - a) $y \le -2$
 - b) $y \le 2$
 - c) $y \le 5$

 - e) y > 5

- max y-value: 5
- Domain & Range of Functions

SOLUTIONS

6) $f(x) = -2x^2$ is translated 3 units to the right and 1 unit up. If the resulting graph is g(x), then what is g(-1)?

Functions, translation, and transformation

If function moves 1 unit up, then it

b) -24

becomes

c) -7

 $-2x^2 + 1$

Then, if function moves 3 units to the right,

What is a_6 ?

d) -4

e) 0

it becomes $-2(x-3)^2+1$

So, g(-1) = -31

7) A sequence is (recursively) defined as

Sequences and Series

a) 6

 $a_2 = 1$

b) 11

and, for n > 2

1st term: 0 2nd term: 1

c) 20

3rd term: 1 + 6(0) = 1

d) 31

 $a_{n} = a_{n-1} + 6a_{n-2}$

4th term: 1 + 6(1) = 7

5th term: 7 + 6(1) = 136th term: 13 + 6(7) = 55

e) 55

Matrices and Tables

8) The table shows the number of math books sold during the last 3 days. The prices of geometry, algebra, and trigonometry are \$57, \$47 and \$74 respectively. Which of the following matrices gives the total revenue, in dollars, from the books for each of the last 3 days?

	saturday	sunday	monday
geometry	28	7	40
algebra	20	11	27
trigonometry	7	4	30

a)
$$\begin{bmatrix} 28 & 7 & 40 \\ 20 & 11 & 27 \\ 7 & 4 & 30 \end{bmatrix}$$
 $\begin{bmatrix} 57 & 47 & 74 \end{bmatrix}$ b) $\begin{bmatrix} 57 & 47 & 74 \end{bmatrix}$ $\begin{bmatrix} 28 & 7 & 40 \\ 20 & 11 & 27 \\ 7 & 4 & 30 \end{bmatrix}$

c)
$$\begin{bmatrix} 57 \\ 47 \\ 74 \end{bmatrix}$$
 $\begin{bmatrix} 28 & 7 & 40 \\ 20 & 11 & 27 \\ 7 & 4 & 30 \end{bmatrix}$

$$\begin{bmatrix} 28 & 7 & 40 \\ 20 & 11 & 27 \\ 7 & 4 & 30 \end{bmatrix} \begin{bmatrix} 57 \\ 47 \\ 74 \end{bmatrix}$$

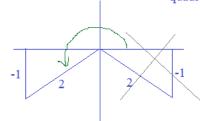
$$\begin{bmatrix} 57 \\ 47 \\ 74 \end{bmatrix} \begin{bmatrix} 28 & 7 & 40 \\ 20 & 11 & 27 \\ 7 & 4 & 30 \end{bmatrix} \qquad \begin{array}{c} d) \\ \begin{bmatrix} 28 & 7 & 40 \\ 20 & 11 & 27 \\ 7 & 4 & 30 \end{bmatrix} \begin{bmatrix} 57 \\ 47 \\ 74 \end{bmatrix} \qquad \begin{array}{c} e) \\ 57 \\ 74 \end{bmatrix} \qquad \begin{array}{c} 28 & 7 & 40 \\ 20 & 11 & 27 \\ 7 & 4 & 30 \end{bmatrix} + 47 \begin{bmatrix} 28 & 7 & 40 \\ 20 & 11 & 27 \\ 7 & 4 & 30 \end{bmatrix} + 74 \begin{bmatrix} 28 & 7 & 40 \\ 20 & 11 & 27 \\ 7 & 4 & 30 \end{bmatrix}$$

9) If integers n > 3 and p > 3, how many pairs (n, p) satisfy the inequality 2n + 2p < 20?

Miscellaneous, logic, numbers, arithmetic

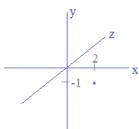
test pairs (n, p):
$$(4, 4)$$
: $8 + 8 < 20$ yes

$$(4, 5)$$
: $8 + 10 < 20$ yes $(5, 4)$: $10 + 8 < 20$ yes


$$(5, 5)$$
: $10 + 10 < 20$ no

SOLUTIONS

10) If $\sin x = \frac{-1}{2}$ and $\tan x > 0$, then x =


since tan > 0, the terminal side of the angle must be in quadrant III

x = 210 degrees which equates to

7pi/6

- 11) The point (2, -1, 0) lies on the
 - a) y-axis
 - b) z-axis
 - c) xy-plane
 - d) xz-plane
 - e) yz-plane

3-Dimension Coordinate Space

12) If $ax^3 + bx^2 + c$ is divided by (x - 3), then the remainder is:

a)
$$-27a + 9b + c$$

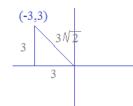
e) -27a + 9b

 $a(3)^3 + b(3)^2 + c$ is the remainder (remainder theorem)

27a + 9b + c

If a polynomial f(x) is divided by a linear term (x - a) --and the remainder is r --- then f(a) = r

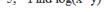
Polynomial Roots and Theorems


13) What are the polar coordinates of a point with (-3, 3) rectangle coordinates?

Polar coordinates

c)
$$(3\sqrt{2}, 45^{\circ})$$

d)
$$(3\sqrt{2}, 135^{\circ})$$


e)
$$(-3/\sqrt{2}, -45^{\circ})$$

$$x = rcos \ominus$$

$$y = rsin \Theta$$

14) Let log(x) = 3 and log(y) = 5; Find $log(x^2 y)$

Logarithms

- a) 11
- b) 14 c) 15

logarithm "product/addition" rule:

log(AB) = logA + logB

- d) 28
- e) 45

$$\log(x^2 y) = \log x + \log x + \log y = 11$$

SOLUTIONS

15) Find
$$(5+2i)(5-2i)$$
 $i^2 = -1$

Complex Numbers

a)
$$25 - 4i$$

FOIL:
$$25 - 10i + 10i - 4i^2$$

25 - 4(-1) = 29

16) The length of the major axis in the ellipse
$$4(x+5)^2 + 9y^2 = 36$$
 is

Conics

$$\frac{(x+5)^2}{9} + \frac{y^2}{4} = 1$$
 (center of ellipse is (-5, 0))

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$
 (a is the length of

the "semi-major" axis)

$$a^2 = 9$$

$$a = 3$$

$$2a = 6$$

entire major axis

17)
$$\cos 2x + \cos x = 0$$
 On the interval $[0, 2]$, $x =$

Trig Identities

 $2\cos x - 1 = 0$

 $\cos x = \frac{1}{2}$

b)
$$\frac{1}{2}$$
 $\frac{3}{2}$

d)
$$2\frac{1}{3}$$
, $\frac{4}{3}$

e)
$$2\frac{1}{3}$$
, 1 , $\frac{4}{3}$

$$2\cos^2 x - 1 + \cos x = 0$$

 $2\cos^2 x + \cos x - 1 = 0$

 $(2\cos x - 1)(\cos x + 1) = 0$

$$x = T$$

 $\cos x + 1 = 0$

$$X = \prod$$

E

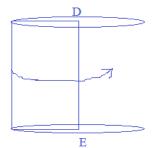
$$x = \frac{1}{3}$$
 and $\frac{5}{3}$

18) If rectangle CDEF is rotated about side DE, it creates a cylinder of volume:

c) 98 介

d) 112 1

e) 196 T↑


$$= \uparrow \uparrow r^2 \text{ (height)}$$

$$= \uparrow \uparrow \uparrow (4)^2 (7)$$

F

Area and Volume (Cylinders, Prisms, Pyramids, etc.)

SOLUTIONS

19) Tom can paint a fence in 5 hours. Huck can paint a fence in 8 hours. If they work together, how long would it take for them to paint *three* fences?

Word Problems

- a) 3 hours 5 minutes
- b) 6 hours 30 minutes
- c) 9 hours 14 minutes
- d) 10 hours 20 minutes
- e) 11 hours 42 minutes

(list variables/formulas)

(multiply by 40 hours)

work = rate x time

8 fences(t) + 5 fences(t) = 120 fences(hours)

Tom: 1 fence = rate x 5 hours

13 fences(t) = 120 fences(hours)

9 hours 14 minutes

Tom's rate = $\frac{1 \text{ fence}}{5 \text{ hours}}$

t = 9.23 hours

Huck: 1 fence = rate x 8 hours

Huck's rate = $\frac{1 \text{ fence}}{8 \text{ hours}}$

Tom: 9.23 hours

(set up equations)

To paint one fence together:

 $\frac{1 \text{ fence}}{5 \text{ hours}} t + \frac{1 \text{ fence}}{8 \text{ hours}} t = 3 \text{ fences}$

(Tom) (Huck)

(check) paints 1.846 fences

Huck: 9.23 hours paints 1.15 fences

together: 3 fences! \slash

Vectors

- 20) u = <3, -2> v = <4, 1> The magnitude of u + v is
 - a) 6
 - b) 10
 - c) 5/\sqrt{2}
 - d) $4\sqrt{3}$
 - e) < 7, -1 >

- u+v=<7, -1> then, the magnitude is $\sqrt{\left(7\right)^2+\left(-1\right)^2}=\sqrt{50}$

x = t + 5

21) A line has the parametric equation x = t + 5 and y = t + 10. What is the slope of the line?

then, using substitution,

Parametric Equations

- a) 1
- b) 2
- c) 5 t=
- d) 10
- e) 50

y = (x - 5) + 10 \longrightarrow y = x + 5 (slope is 1)

 $m^7 - 7m^6p + 21m^5p^2 - 35m^4p^3 + 35m^3p^4 - 21m^2p^5 + 7m^6p - p^7$

22) The 4th term in the binomial expansion $(m-p)^7$ is

Binomial Expansion

- a) 4mp
- b) 35mp
- c) $35m^4 p^3$
- d) $-35m^4 p^3$
- e) $-70 \text{m}^4 \text{p}^3$

Thanks for checking out this introductory packet of math questions. (Hope it helps!). If you have questions, suggestions, or requests, let us know!
Cheers,
Lance
Looking for more practice SAT Subject Math Level 2 Questions (w/solutions)?
Visit the ACT/SAT section at Mathplane.com

Available at TeacherPayTeachers or Mathplane.com

1) A game has 2 spinners. Spinner #1 has a probability of landing red of 2/3. And, spinner #2 has a probability of landing red of 1/5.

What is the probability spinner #1 lands red AND spinner #2 does NOT land red?

- a) 2/15
- b) 8/15
- c) 13/15
- d) 1/5
- e) 3/5
- 2) For some positive real number 'b', b - 1, b + 4, 3b + 2. What is the
 - a) 16
 - b) 20
 - c) 24
 - d) 28
 - e) 40
- 3) Which equation best models the following data in the table:

a)
$$y = 1.2(4.4)^X$$

b)
$$y = 4.4(1.2)^X$$

c)
$$y = -1.2(4.4)^X$$

d)
$$y = -4.4(1.2)^X$$

e)
$$y = 1.2x^{4.4}$$

150 SAT Subject Test Math Level 2 **Practice Questions**

(and, Solutions)

by Lance Friedman

X	-6 .7	-1.3	3.2	8.8
y	1.30	3.47	7.89	21.89

4) The figure shows a square region divided into 4 rectangle regions. If the area of ABCD is 100 what is the area of MOCP?

- a) 16
- b) 24
- c) 28
- d) 36
- e) 64
- 5) $\sin(\tan^{-1} 3) =$

 - a) $\frac{1}{3}$ b) $\frac{3\sqrt{10}}{10}$ c) $\frac{1}{2}$
- В x^2 4x M

(Thanks for your support! Proceeds go to site maintenance and treats for Oscar the dog!)