Pythagorean Theorem \& Distance

Notes, proofs, examples, and test (w/solutions)

$$
\begin{gathered}
a^{2}+b^{2}=c^{2} \quad \begin{array}{c}
\text { where } a \text { and } b \text { are lengths of the legs of a right triangle } \\
\text { and } c \text { is the length of the hypotenuse }
\end{array}
\end{gathered}
$$

Identifying triangles by their sides:

$$
\begin{array}{ll}
a^{2}+b^{2}=c^{2} & \text { right triangle } \\
a^{2}+b^{2}>c^{2} & \text { acute triangle } \\
a^{2}+b^{2}<c^{2} & \text { obtuse triangle }
\end{array}
$$

Distance Formula illustrates Pythagorean Theorem!

There are many ways to prove (verify) the Pythagorean Theorem.
Here are 2 approaches:

1) Using Proportional Triangles:
$\triangle \mathrm{ABC}$ is a right triangle
$\overline{\mathrm{CT}}$ is an altitude
(an altitude drawn from the vertex of a right triangle to the hypotenuse forms three similar right triangles)

Let's divide into 3 triangles and compare:

1)

$$
\begin{aligned}
\frac{\mathrm{AC}}{\mathrm{AB}} & =\frac{\mathrm{AT}}{\mathrm{AC}} & \frac{\mathrm{CB}}{\mathrm{~TB}}=\frac{\mathrm{AB}}{\mathrm{CB}} \\
\frac{\text { Hypotenuse } 1}{\text { Hypotenuse } 3} & =\frac{\text { Left leg } 1}{\text { Left leg } 3} & \frac{\text { Bottom leg } 3}{\text { Bottom leg } 2}=\frac{\text { Hypotenuse } 3}{\text { Hypotenuse 2 }}
\end{aligned}
$$

2) (Cross multiply each proportion)

$$
\begin{aligned}
& (\mathrm{AC})(\mathrm{AC})=(\mathrm{AB})(\mathrm{AT}) \\
& (\mathrm{CB})(\mathrm{CB})=(\mathrm{AB})(\mathrm{TB})
\end{aligned}
$$

3) (Add them together and simplify)

$$
(\mathrm{AC})(\mathrm{AC})+(\mathrm{CB})(\mathrm{CB})=(\mathrm{AB})(\mathrm{AT})+(\mathrm{AB})(\mathrm{TB})
$$

$$
(\mathrm{AC})^{2}+(\mathrm{CB})^{2}=(\mathrm{AB})[(\mathrm{AT})+(\mathrm{TB})]
$$

$$
(\mathrm{AT})+(\mathrm{TB})=(\mathrm{AB})
$$

2) Geometric proof (area of squares):
area of green square $=\mathrm{a}^{2}$
area of \tan square $=b^{2}$
area of blue square $=c^{2}$

Distance Formula and Pythagorean theorem

Example: A and B are endpoints of a diameter of circle O .
A: $(-1,5)$
B: $(3,-3)$
What is the area of the circle?

Step 1: Draw a diagram and identify formulas

$$
\begin{aligned}
& \text { Area }=T^{\prime}(\text { radius })^{2} \\
& \text { radius }=\frac{1}{2}(\text { diameter })
\end{aligned}
$$

Step 2: Find missing variable(s)

We need to find the distance from A to B

$$
\text { distance }=\sqrt{\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)^{2}+\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)^{2}}
$$

$$
\begin{aligned}
\mathrm{d} \overline{\mathrm{AB}} & =\sqrt{(-1-3)^{2}+(5-(-3))^{2}} \\
& =\sqrt{16+64}=\sqrt{80}=4 \sqrt{5}
\end{aligned}
$$

Step 3: Answer question

$$
\text { Area }=\pi^{\prime}(\text { radius })^{2}
$$

Note: The distance formula and Pythagorean Theorem are quite similar!

OR We need to find the length of $\overline{\mathrm{AB}}$

$$
\text { Pythagorean Theorem: } a^{2}+b^{2}=c^{2}
$$

We ned the ther
 form a right triangle with vertex $\left(\mathrm{x}_{\mathrm{A}}, \mathrm{y}_{\mathrm{B}}\right)$
ince the diameter $A B=4 \sqrt{5}$, the radius of the circle is $2 \sqrt{5}$
Then, the area of the circle is $\pi(2 N \sqrt{5})^{2}=20 \pi /$

Given: Right Triangle ABC

$\overline{\mathrm{AE}}$ and $\overline{\mathrm{CD}}$ are medians
$\overline{\mathrm{AE}}=4 \sqrt{10}$
$\overline{\mathrm{CD}}=10$

Find the length of $\overline{\mathrm{AC}}$

Since $\overline{\mathrm{AE}}$ is a median, $\overline{\mathrm{BE}}=\overline{\mathrm{CE}}$
$\overline{\mathrm{CD}}$ is a median, $\overline{\mathrm{AD}}=\overline{\mathrm{BD}}$

Since $\angle \mathrm{B}$ is a right angle,
$\triangle \mathrm{CBD}$ is a right triangle
$\triangle \mathrm{ABE}$ is a right triangle
Use pythagorean theorem to find X and Y :

$\mathrm{X}^{2}+(2 \mathrm{Y})^{2}=(4 \sqrt{10})^{2}$
$\left\{\begin{array}{l}\mathrm{X}^{2}+4 \mathrm{Y}^{2}=160 \\ (2 \mathrm{X})^{2}+\mathrm{Y}^{2}=10^{2} \\ 4 \mathrm{X}^{2}+\mathrm{Y}^{2}=100\end{array}\right.$

2 equations with 2 unknowns: use substitution to find solutions...

$$
\begin{aligned}
& 4\left(160-4 Y^{2}\right)+Y^{2}=100 \\
& 640-16 Y^{2}+Y^{2}=100
\end{aligned}
$$

$$
-15 \mathrm{Y}^{2}=-540
$$

$$
\mathrm{Y}^{2}=36
$$

(since we're measuring length, we'll eliminate the negative value)

$$
\mathrm{Y}=6,-6
$$

$4 X^{2}+Y^{2}=100$
$4 X^{2}+6^{2}=100$
$4 \mathrm{X}^{2}=64$
$x=4,-4$
$\overline{\mathrm{AC}}=\sqrt{\mathrm{AB}^{2}+\mathrm{BC}^{2}}$
$=\sqrt{144+64}=4 \sqrt{13}$

$\mathrm{AB}=12$
$B C=8$

Pythagorean Theorem, Right Angle, and Distance Examples

Example: The perimeter of a rhombus is 100 inches.
One of the interior angles is 120 degrees.

What are the lengths of the diagonals?

Step 1: Draw a picture and label

Rhombus: all sides are congruent
each side $=\frac{100 \text { inches }}{4 \text { sides }}=25$ inches

Step 2: Develop equation

Rhombus: diagonals are perpendicular bisectors since opposite sides are parallel, then the adjacent sides are supplementary

Each of the 4 triangles inside the rhombus is a 30-60-90 right triangle!

Step 3: Solve and Answer Question

Since the hypotenuse is 25 inches,
small side' is $25 / 2=12.5$ inches
medium side' is $12.5 \times \sqrt{3} \xlongequal{\cong} 21.65$ inches

Therefore, the long diagonal is $2 \times 21.65=$
(approx)
the short diagonal is $2 \times 12.5=$
25 inches

Example: The vertices of triangle ABC are the coordinates

$$
\begin{array}{ll}
A=(2,3) & \text { What is the length of the median from } \\
B=(12,5) & \text { point } C \text { to side } \overline{A B} ?
\end{array}
$$

Step 1: Sketch a diagram

Step 2: Find relevant equation

Definition of a median: segment drawn from vertex to midpoint of the opposite side....

What's the midpoint of $\overline{\mathrm{AB}}$?

$$
\left(\frac{2+12}{2}, \frac{3+5}{2}\right)=(7,4)
$$

Step 3: Solve and Answer question
The length of the median is the distance from C to the median of $\overline{\mathrm{AB}}$.

$$
\begin{aligned}
\text { distance } & =\sqrt{\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)^{2}+\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)^{2}} \\
\mathrm{~d}_{\text {median }} & =\sqrt{(9-7)^{2}+(8-4)^{2}} \\
& =\sqrt{4+16}=2 \sqrt{5}
\end{aligned}
$$

Example: A boat leaves the dock and goes 1 mile west; then, 3 miles south;
Pythagorean Theorem, Right Angle, and Distance Examples then, 5 miles west; then 1 mile north...

How far is the boat from the dock?

Step 1: Draw a picture and label
find d :

Step 2: Set up the equation
The trick to setting up the equation is recognizing that the boat has ultimately formed a right triangle!

Step 3: Solve
Since we know the legs of the right triangle, we can use the Pythagorean Theorem to find the hypotenuse (d):
$(6)^{2}+(2)^{2}=d^{2}$
$40=d^{2}$
The boat is $\sqrt{40}$
or, approx. 6.3 miles from the dock.

Example: You have a cardboard box with dimensions $20^{\prime \prime} \times 15^{\prime \prime} \times 25^{\prime \prime}$.
If you want to ship a $33^{\prime \prime}$ golf club, can you fit the club inside your cardboard box and mail it?

Step 1: Draw a diagram and label

Step 3A: Find the 'front' diagonal

Pythagorean theorem (or recognize that $15-20-25$ is a multiple of 3-4-5)

$$
15^{2}+20^{2}=25^{2}=\overline{\mathrm{AB}}
$$

Step 2: Develop strategy and equations
Obviously, the $33^{\prime \prime}$ club must be placed diagonally inside the box to fit (because $33>20,15$, or 25)...

So, what is the maximum length inside the box? i.e. what is the diagonal from one corner to the opposite corner of the box?

Since every vertex/corner of the box is a right angle, we can use the pythagorean theorem to find lengths.

Step 3B: Find the main diagonal across the box
(looking above the box)

Step 4: Solve/Answer the question
The length of the diagonal $\overline{\mathrm{AD}}$ is
$25 / \sqrt{2}$ inches or approximately $35.35^{\prime \prime}$

> Since this distance exceeds the length of the golf club, the club will fit inside the box!

Using Pythagorean theorem
(or recognize that this is a 45-45-90 triangle)

$$
\overline{\mathrm{AD}}=25 \lambda \sqrt{2}
$$

Practice Quiz on next page...

Right triangle, pythagorean theorem, and distance questions

Part I: Formulas and Definitions

1) Given the lengths of the sides of a triangle, determine if each is right, acute, obtuse, or neither:
a) $30,40,50$
b) $3,7,12$
c) $6,8,11$
d) 2,2,2
e) $4,6,8$
2) Find the lengths of segments with endpoints:
a) $(-1,6)$ and $(3,4)$
b) $(2,-4)$ and $(2,9)$
c) (-3, -5) and (0,0)

Part II: Applying Geometry Concepts

1) Find the altitude of a trapezoid with sides $2,41,20$, and 41 respectively..

Right triangle, pythagorean theorem, and distance questions
2) Given: Triangle $A B C$

Coordinates:

$$
\begin{aligned}
& \mathrm{A}=(2,3) \\
& \mathrm{B}=(3,7) \\
& \mathrm{C}=(6,1)
\end{aligned}
$$

a) Find the length of the median from B to $\overline{\mathrm{AC}}$:
b) Find the length of the altitude from A to $\overline{\mathrm{BC}}$:
3) If the endpoints of a hypotenuse are ($-2,3$) and (5, -4), identify two possible vertices of the right triangle.

Geometry Quiz: Pythagorean Theorem, Right Triangles, \& Distance
Part III: More Geometry Applications

1) TRP is a right triangle
$\overline{\mathrm{PI}}=18$
$\angle \mathrm{P}=30^{\circ}$
$\overline{\mathrm{RI}}$ is an altitude

Find the perimeter of $\triangle \mathrm{TRI}$
T

R
2) You have a box where the length, width, and depth are no longer than $2^{\prime} 6^{\prime \prime}$. If you want to ship a golf club that is $4^{\prime} 5^{\prime \prime}$, would the club fit inside the box?
3) A racer runs 5 miles north, 2 miles west, 3 miles north, and 4 miles west. How far is he from the starting line?

Geometry Quiz: Pythagorean Theorem, Right Triangles, \& Distance
4) $A B C D$ is a (non-isosceles) trapezoid. (see diagram) If the length of the altitude is 6 , find $\overline{\mathrm{CD}}$.

5) What is the area of an equilateral triangle with perimeter 30 meters?
6) The point $(5, n)$ is equidistant from $(1,3)$ and $(10,2)$.

Find n .
7) Find X
8) If KIT and KET are right angles, what is the perimeter of KITE?

9) If the figure is a regular hexagon,
a) how many diagonals?
b) what is the sum of the lengths of all the diagonals?

10) What is the length of altitude x ?

11) A trapezoid has two right angles and bases 12^{\prime} and 1^{\prime}.

If the height is 8^{\prime}, then
What is the perimeter?
What is the area?
12) The area of an isosceles trapezoid is 138 square feet.

The height is 6 feet and the length of one leg is 10 feet.
What are the lengths of each base?
13) Determine the area of the isosceles trapezoid:

14
14) Prove that the only Pythagorean Triple with consecutive integers is 3-4-5.
15) Find x.

16) Given: the area of the right triangle is 40 ..

Find the measures of x and y

Right triangle, pythagorean theorem, and distance questions

Part I: Formulas and Definitions

1) Given the lengths of the sides of a triangle, determine if each is right, acute, obtuse, or neither:
a) $30,40,50$ Right ($10 \times 3-4-5$ triangle)
b) $3,7,12$ Neither (does not exist because $3+7<12$)
c) $6,8,11$ Obtuse $36+64<121$
d) 2,2,2 Acute (also, equilateral)
e) 4, 6, 8 Obtuse $16+36<64$
2) Find the lengths of segments with endpoints:
a) $(-1,6)$ and $(3,4)$

$$
\begin{aligned}
& \sqrt{(6-4)^{2}+(-1-3)^{2}} \\
& =\sqrt{4+16}=2 \sqrt{5}
\end{aligned}
$$

b) $(2,-4)$ and $(2,9)$ (vertical line segment)

13 units
c) $(-3,-5)$ and $(0,0)$

$$
\begin{aligned}
& \sqrt{(0+3)^{2}+(0+5)^{2}} \\
& =\sqrt{9+25}=\sqrt{34}
\end{aligned}
$$

Part II: Applying Geometry Concepts

1) Find the altitude of a trapezoid with sides $2,41,20$, and 41 respectively..

Since it is a trapezoid,
2 sides must be parallel...

Use Pythagorean Theorem to find the altitude A:
$(9)^{2}+(\mathrm{A})^{2}=(41)^{2}$
$81+(\mathrm{A})^{2}=1681$

$$
\mathrm{A}=40
$$

Right triangle, pythagorean theorem, and distance questions

SOLUTIONS

2) Given: Triangle $A B C$

Coordinates:

$$
\begin{aligned}
& \mathrm{A}=(2,3) \\
& \mathrm{B}=(3,7) \\
& \mathrm{C}=(6,1)
\end{aligned}
$$

a) Find the length of the median from B to $\overline{\mathrm{AC}}$:

Step 1: Draw a sketch

Step 2: Identify the median (from B to the midpoint of $\overline{\mathrm{AC}}$)
Step 3: Find coordinates

$$
\mathrm{B}=(3,7) \quad \text { midpoint } \mathrm{M}=\left(\frac{2+6}{2}, \frac{3+1}{2}\right)=(4,2)
$$

Step 4: Find distance between coordinates
Use distance formula \qquad
b) Find the length of the altitude from A to $\overline{\mathrm{BC}}$: 1) Line BC : slope between $(3,7)$ and $(6,1)$

Note: The altitude is perpendicular to the base.
length of median
$\overline{\mathrm{BM}}=\sqrt{(4-3)+(2-7)}=\sqrt{26}$

To find point H , we need to find the intersection of $\overline{\mathrm{AH}}$ and $\overline{\mathrm{BC}}$

2) Line AH : slope is $1 / 2$

(opposite reciprocal of BC slope)

$$
\begin{aligned}
& \text { then, line } \\
& y-1=-2(x-6) \\
& \text { segment } \xrightarrow{\rightarrow} y=-2 x+13
\end{aligned}
$$

Finally, find distance
3) $\begin{aligned} & y=-2 x+13 \\ & y=1 / 2(x)+2\end{aligned}$
4) from A to H :
then, line

$$
\begin{aligned}
& \text { segment } \\
& y=1 / 2(x)+2 \\
& y=1 / 2(x-2)
\end{aligned}
$$

$-2 \mathrm{x}+13=1 / 2(\mathrm{x})+2$
$\begin{gathered}\mathrm{x}=22 / 5 \\ \text { then, } \mathrm{y}=21 / 5\end{gathered}$
(22/5, 21/5)

$$
\begin{gathered}
(2,3) \\
\sqrt{(12 / 5)^{2}+(6 / 5)^{2}} \\
\sqrt{180 / 25}=\frac{6 / \sqrt{5}}{5}
\end{gathered}
$$

(approx. 2.68)

or

Part III: More Geometry Applications

1) TRP is a right triangle
$\overline{\mathrm{PI}}=18$
$\angle \mathrm{P}=30^{\circ}$
$\overline{\mathrm{RI}}$ is an altitude

Find the perimeter of $\triangle \mathrm{TRI}$

R

TRP is a right triangle; RI is an altitude from the vertex to the hypotenuse... Therefore, there are 3 similar right triangles!

Since angle P is 30 degrees, we know the other angles are 60 degrees.
(We have three 30-60-90 triangles)

$$
\text { Since } \mathrm{RI}=6 \sqrt{3}
$$

$$
\mathrm{TI}=6
$$

$$
\mathrm{RT}=12
$$

$$
\text { Perimeter } \triangle \mathrm{TRI}=18+6 \sqrt{3}
$$

2) You have a box where the length, width, and depth are no longer than $2^{\prime} 6^{\prime \prime}$.

If you want to ship a golf club that is $4^{\prime} 5^{\prime \prime}$, would the club fit inside the box?

Step 1: Draw a diagram; identify variables and formulas

Assume 1, w, and depth maximum $2^{\prime} 6{ }^{\prime \prime}$

The maximum length is the diagonal of the box

Step 2A: Find front diagonal
Use Pythagorean Theorem or 45-45-90 ratios

Step 2B: Find the cross diagonal (front left to back right)

$\mathrm{AD}=$ $\sqrt{900+1800}$
$=51.96^{\prime \prime}$
3) A racer runs 5 miles north, 2 miles west, 3 miles north, and 4 miles west. How far is he from the starting line?

right triangle:
6-8-x
$\mathrm{x}=10$
("pythagorean triplet")

The racer is 10 miles

from the starting line.

Geometry Quiz: Pythagorean Theorem, Right Triangles, \& Distance

4) ABCD is a (non-isosceles) trapezoid. (see diagram)

If the length of the altitude is 6 , find $\overline{\mathrm{CD}}$.

Step 1: Find $\overline{\mathrm{FC}} \quad 30-60-90$ right triangle:

$$
\begin{aligned}
& \mathrm{FC}=\frac{6}{\sqrt{3}} \\
& \mathrm{BC}=\frac{12}{\sqrt{3}}
\end{aligned}
$$

Step 3: Add all 3 parts of the base

$$
\begin{aligned}
\overline{\mathrm{DC}} & =\overline{\mathrm{DG}}+\overline{\mathrm{GF}}+\overline{\mathrm{FC}} \\
& \sqrt{2 N \sqrt{7}+8+2 \sqrt{3}}
\end{aligned}
$$

5) What is the area of an equilateral triangle with perimeter 30 meters?

Step 1: Draw a picture and label

10
Equilateral triangle has 3 equal sides and equal angles!

Step 2: Identify formula and find missing variable(s)

$$
\text { Area of } \triangle=\frac{1}{2} \text { (base)(height) }
$$

$$
\begin{gathered}
\text { base }=10 \text { meters } \\
\text { height }=? \\
\text { Step 3: Solve } \\
\frac{1}{2}(\text { base })(\text { height })= \\
\frac{1}{2}(10 \mathrm{~m})(5 \sqrt{3} \mathrm{~m})=
\end{gathered}
$$

$25 \sqrt{3}$ square meters
(altitude forms a right

30-60-90 triangle
small side $=1 / 2$ hypotenuse

$$
=1 / 2(10)=5 \text { meters }
$$ medium side $=\sqrt{3}$ small side $\cdots=5 / \sqrt{3}$

6) The point $(5, \mathrm{n})$ is equidistant from $(1,3)$ and $(10,2)$.

Find n .
distance $=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$
distance from $(5, \mathrm{n})$ to $(1,3)$: \quad distance from $(5, \mathrm{n})$ to $(10,2)$:
$\begin{array}{ll}\sqrt{(5-1)^{2}+(n-3)^{2}} & = \\ \sqrt{(5-10)^{2}+(n-2)^{2}} & = \\ \sqrt{16+\mathrm{n}^{2}-6 \mathrm{n}+9} & \rightarrow \sqrt{25+\mathrm{n}^{2}-4 \mathrm{n}+4}\end{array}$
must be equal

Square both equations and combine like terms:

$$
n^{2}-6 n+25=n^{2}-4 n+29
$$

$$
-2 n=4
$$

$$
\mathrm{n}=-2
$$

8) If KIT and KET are right angles, what is the perimeter of KITE?

Since $\overline{\mathrm{EM}}$ is an altitude (to hypotenuse),

$$
\overline{\mathrm{EM}}=\sqrt{50}
$$

(Then, using Pythagorean Theorem)
Then, $\overline{\mathrm{ET}}$ and $\overline{\mathrm{IT}}$ are $5 \sqrt{3}$
And, $\overline{\mathrm{KE}}$ and $\overline{\mathrm{IK}}$ are $5 \sqrt{6}$

$$
\text { Total: } 10 \sqrt{3}+10 \sqrt{6}
$$

9) If the figure is a regular hexagon,
a) how many diagonals?
b) what is the sum of the lengths of all the diagonals?
diagonals $=\frac{\mathrm{n}(\mathrm{n}-3)}{2}=\frac{6(3)}{2}=9$ diagonals

3 of them are 'long diagonals' across,
and 6 of them are 'small diagonals that connect every other vertex...

$$
3 \times 16=48 \quad 6 \times 8 \sqrt{3}=48 \sqrt{3}
$$

$$
48+48 \sqrt{3}
$$

10) What is the length of altitude x ?

$$
\begin{gathered}
\mathrm{A}^{2}+\mathrm{x}^{2}=13^{2} \quad \text { Pythagorean Theorem } \\
(20-\mathrm{A})^{2}+\mathrm{x}^{2}=15^{2} \\
400-40 \mathrm{~A}+\mathrm{A}^{2}+\mathrm{x}^{2}=15^{2} \quad \text { Solve the System } \\
\mathrm{A}^{2}+\mathrm{x}^{2}=13^{2} \\
400-40 \mathrm{~A}=56 \\
40 \mathrm{~A}=344 \\
\mathrm{~A}=8.6 \\
\text { therefore } \mathrm{x}=9.75 \text { (approx) }
\end{gathered}
$$

11) A trapezoid has two right angles and bases 12^{\prime} and 18^{\prime}.

If the height is 8^{\prime}, then

What is the perimeter? What is the area?

SOLUTIONS

Perimeter: 48^{\prime}

Area: 120 square feet
12) The area of an isosceles trapezoid is 138 square feet. The height is 6 feet and the length of one leg is 10 feet. What are the lengths of each base?

$$
\begin{aligned}
\text { Area of trapezoid } & =\frac{1}{2}(\text { base } 1+\text { base } 2)(\text { height }) \\
138 & =\frac{1}{2}(16+x+x)(6) \\
276 & =(6)(2 x+16) \\
46 & =2 x+16 \quad x=15
\end{aligned}
$$

13) Determine the area of the isosceles trapezoid:

Using altitudes and Pythagorean
Theorem, we find the height is 5
bases are 14 and 10

$$
\longrightarrow \text { area is } \frac{1}{2}(10+14)(5)=60 \text { square units }
$$

14) Prove that the only Pythagorean Triple with consecutive integers is 3-4-5

Since they are consecutive integers, the numbers will be $x, x+1$, and $x+2$

Use Pythagorean Theorem:

$$
\begin{gathered}
x^{2}+(x+1)^{2}=(x+2)^{2} \\
x^{2}+x^{2}+2 x+1=x^{2}+4 x+4 \\
x^{2}-2 x-3=0 \\
(x+1)(x-3)=0 \\
x=-1 \text { or } 3
\end{gathered}
$$

of course, a triangle cannot have negative sides or 0
15) Find x.

16) Given: the area of the right triangle is 40. .

Find the measures of x and y
since the area of the right triangle is 40 , the height (x) must be $10 \ldots$

Then, since legs are 8 and $10 \ldots$.

$$
y^{2}=8^{2}+10^{2} \quad y=\sqrt{164}-\quad \begin{array}{r}
\text { or } 2 \sqrt{41}
\end{array}
$$

Thanks for visiting the site. (Hope it helped!)
If you have questions, suggestions, or requests, let us know.
Cheers...

One more question:

What is x ? (Solution on next page)

What is the length x ?
a) $\sqrt{7}$
b) $\sqrt{10}$

d) $\sqrt{14}$
e) 7

SOLUTION

Use Pythagorean Theorem to find x

$$
\begin{gathered}
\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2} \\
(\sqrt{5}+\sqrt{2})^{2}+(\sqrt{5}-\sqrt{2})^{2}=\mathrm{x}^{2} \\
(\sqrt{5}+\sqrt{2})(\sqrt{5}+\sqrt{2})+(\sqrt{5}-\sqrt{2})(\sqrt{5}-\sqrt{2})=\mathrm{x}^{2} \\
5+\sqrt{10}+\sqrt{10}+2 \quad 5-\sqrt{10}-\sqrt{10}+2=\mathrm{x}^{2} \\
5+\sqrt{10}+\sqrt{10}+2 \quad \\
5-\sqrt{10}-\sqrt{10}+2=\mathrm{x}^{2} \\
14=\mathrm{x}^{2} \\
\sqrt{14}=\mathrm{x}
\end{gathered}
$$

