Polynomials 2: Factors, Roots, and Theorems

Examples, Notes, and Practice Tests (with Solutions)

Topics include rational root, factoring, conjugates, graphing, synthetic division, long division, sum and product rules, and more.

Example: Factor and Sketch the Polynomial
$g(x)=x^{4}+8 x^{3}+15 x^{2}-4 x-20$
(There is no greatest common factor (GCF))
Step 1: Use Rational Root Theorem to find factor

$$
\begin{aligned}
& \text { 'p': factors of } 20: 1,2,4,5,10,20 \\
& \text { 'q': factors of } 1: 1
\end{aligned}
$$

Possible rational roots: $\pm \frac{'^{\prime} \mathrm{p}^{\prime}}{\prime \mathrm{q}} \quad \pm 1, \pm 2, \pm 4, \pm 5, \pm 10, \pm 20$

Step 2: Use Remainder/Factor Theorem to select a root

$$
\text { Test }(-1): \quad g(-1)=(-1)^{4}+8(-1)^{3}+15(-1)^{2}-4(-1)-20
$$

$=-8 \quad$ Since $g(-1)=-8$, the remainder of $g(x) \div(x+1)$ is $8 \ldots$
It is NOT a root (factor)
Test (1): $\quad g(1)=(1)^{4}+8(1)^{3}+15(1)^{2}-4(1)-20$
$=0 \quad$ Since $g(1)=0$, the remainder of $g(x) \div(x-1) \quad$ is 0 It is a root (factor)

Step 3: Use Synthetic Division to reduce the polynomial by 1 degree

1 \begin{tabular}{r}

1 | 1 | 8 | 15 | -4 | -20 |
| ---: | ---: | ---: | ---: | ---: |
| | 1 | 9 | 24 | 20 |
| | 9 | 24 | 20 | 0 |

\end{tabular}

$$
\begin{equation*}
x^{3}+9 x^{2}+24 x+20 \tag{x}
\end{equation*}
$$

Repeat Steps 1,2 , and 3 to find the next root:

$$
x^{3}+9 x^{2}+24 x+20
$$

' p ': factors of $20: 1,2,4,5,10,20$
' q ': factors of 1 : 1
Possible rational roots: $\pm \frac{\mathrm{p}^{\prime}}{\mathrm{q}^{\prime}} \pm 1, \pm 2, \pm 4, \pm 5, \pm 10, \pm 20$

$$
-1,-2,-4,-5,-10,-20
$$

$$
\rangle
$$

Note: Since each term in the polynomial has a positive coefficient, the remaining rational roots will NOT be positive!
(i.e. using the remainder theorem, there is no way $h(\mathrm{x})=0$ if x is a positive number...)

Step 4: Factor the quadratic..

Note: the discriminant $b^{2}-4 a c=49-40=9$
$\begin{array}{ll} & g(\mathrm{x})=\mathrm{x}^{4}+8 \mathrm{x}^{3}+15 \mathrm{x}^{2}-4 \mathrm{x}-20 \\ \text { or } \quad & g(\mathrm{x})=(\mathrm{x}+2)^{2}(\mathrm{x}-1)(\mathrm{x}+5)\end{array}$ y-intercept is $(0,-20)$

Since -1 did not work before, we'll test -2

$$
\begin{aligned}
h(-2) & =(-2)^{3}+9(-2)^{2}+24(-2)+20 \\
& =0
\end{aligned}
$$

$$
\begin{array}{rrrr}
-2 \left\lvert\, \begin{array}{ccc}
1 & 9 & 24 \\
20
\end{array}\right. & x^{2}+7 x+10 x \\
& -2 & -14 & -20
\end{array}
$$

$$
x^{2}+7 x+10 x=(x+2)(x+5)
$$

$(x+2)(x+5)$
since $9>0$, the solutions/zeros are REAL
and, since 9 is a perfect square, they are RATIONAL

Step 5: Using the factors and equation, sketch the curve
x-intercepts are the zeros: $-2,-2,1,-5 \cdots(-2,0)(1,0)$ and $(-5,0)$
end behavior: The degree is 4 , so the ends go in the same direction..
The lead coefficient is positive, so the curve goes up

$$
\begin{aligned}
& \text { as } \mathrm{x}-->\infty, \quad g(\mathrm{x})-->\infty \\
& \mathrm{x}-->-\infty, g(\mathrm{x})-->\infty
\end{aligned}
$$

since the zero (-2) has a multiplicity of 2
(i.e. $(x+2)(x+2))$, there will be a "bounce" at -2

(My "sketch")

$$
(x+2)
$$

Clarifying the polynomial terms:
Example: $\mathrm{y}=\mathrm{x}^{4}-3 \mathrm{x}^{3}-13 \mathrm{x}^{2}+15 \mathrm{x} \quad$ zeros $\quad 1,-3,5,0$
intercepts $(1,0) \quad(-3,0)(5,0) \quad(0,0)$ or the origin
"roots" $\quad 1,-3,5,0$
factors $(x-1)(x+3)(x)(x-5)$

Searching for rational roots: A Shortcut
Example: Find the roots of the polynomial

$$
f(x)=x^{3}+12 x^{2}+21 x+10
$$

\uparrow

Since the polynomial cannot be factored by grouping, we'll check for rational roots...
"p's" (factors of the constant): 1, 2, 5, 10
"q's" (factors of the lead term): 1
According to rational root theorem, possible rational roots include $1,2,5,10,-1,-2,-5,-10$

Which possible rational root shall we check first? possible rational roots -- we can eliminate all the positive possiblities!
There is no way that $f(x)=0$ if x is positive...

Since we can eliminate all the positive numbers, we'll start with -1 :

$$
f(-1)=(-1)^{3}+12(-1)^{2}+21(-1)+10=0
$$

(according to remainder/factor theorems, -1 is a root)

Sum and Product Rules of Roots:
Example: Write a quadratic equation with zeros $(3+5 i)$ and $(3-5 i)$

Method 1: Using sum and product rule of roots
SUM of the roots: $(3+5 i)+(3-5 i)=6$
PRODUCT of the roots: $(3+5 i)(3-5 i)=$

$$
\begin{array}{r}
9+15 i-15 i-25 i^{2} \\
9-(-25)=34
\end{array}
$$

$\frac{\text { Sum of roots }}{\mathrm{A}}=-\mathrm{B}$
$\underline{\text { Product of roots }}=\mathrm{C}$

$$
\begin{aligned}
& A \\
& 1 x^{2}-6 x+34
\end{aligned}
$$

Method 2: FOIL and binomials

$$
\begin{array}{rc}
& (\mathrm{x}-(3+5 i))(\mathrm{x}-(3-5 i)) \\
\mathrm{x}(\mathrm{x}-3+5 i) & (\mathrm{x}-3-5 i)(\mathrm{x}-3+5 i) \\
-3(\mathrm{x}-3+5 i) & \mathrm{x}^{2}-3 \mathrm{x}+5 i \mathrm{x} \\
-5 i(\mathrm{x}-3+5 i) & -3 \mathrm{x} \quad+9-15 i \\
\cline { 3 - 3 } \begin{array}{c}
\mathrm{x}^{2}-6 \mathrm{x} \\
+15 i-25 i^{2}
\end{array} \\
& \mathrm{x}^{2}-6 \mathrm{x}+34
\end{array}
$$

Then, what is the cubic with zero -1

$$
(x+1)\left(x^{2}-6 x+34\right)
$$

zero is $-1, \quad-7$
so factor is $(x+1)$

Example: Given the polynomial $g(\mathrm{x})=\mathrm{x}^{7}-3 \mathrm{x}^{2}-1$
What is the remainder of $\frac{g(\mathrm{x})}{(\mathrm{x}-3)}$?
Evaluate with synthetic division... Then, check with remainder theorem....
(synthetic division)

$3 \begin{array}{r}|$| 1 | 0 | 0 | 0 | 0 | -3 | 0 | -1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 3 | 9 | 27 | 81 | 243 | 720 | 2160 |
| 1 | 3 | 9 | 27 | 81 | 240 | 720 | 2159 |
| | | | | | | | |\end{array}

(remainder theorem)
$g(3)=(3)^{7}-3(3)^{2}-1$
$=2187-27-1$
$=2159$

Conjugate Root Theorem
Since $3 i$ is a root, then $-3 i$ must be a root, too...

$$
\begin{aligned}
(\mathrm{x}+3 i)(\mathrm{x}-3 i) & =\mathrm{x}^{2}+3 i \mathrm{x}-3 i \mathrm{x}-9 i^{2} \\
& =\mathrm{x}^{2}+9
\end{aligned}
$$

Polynomial Long Division

$$
\begin{gathered}
x^{3}+4 x^{2}-3 x-18 \\
\left(x^{2}+9\right) \begin{array}{r}
x^{5}+4 x^{4}+6 x^{3}+18 x^{2}-27 x-162 \\
-x^{5}+9 x^{3}
\end{array} \\
\begin{array}{r}
-4 x^{4}-3 x^{3}+18 x^{2} \\
-36 x^{2} \\
-3 x^{3}-18 x^{2}-27 x
\end{array} \\
\frac{-18 x^{3}-18 x^{2}}{-162}
\end{gathered}
$$

Example: $\mathrm{x}^{5}+4 \mathrm{x}^{4}+6 \mathrm{x}^{3}+18 \mathrm{x}^{2}-27 \mathrm{x}-162$
If $3 i$ is a zero, find the other zeros...
Then, write the polynomial in factored form...

Rational Root Theorem
Possible rational roots: " p ": $1,2,3,6,9,18$
"q": 1
$1,-1,2,-2,3,-3,6,-6,9,-9,18,-18$
Remainder/Factor Theorem
If $x=1,(1)^{3}+4(1)^{2}-3(1)-18=-16 \quad$ NOT a factor
If $x=-1,(-1)^{3}+4(-1)^{2}-3(-1)-18=-12$ NOT a factor
If $\mathrm{x}=2,(2)^{3}+4(2)^{2}-3(2)-18=0 \quad$ FACTOR!! $(x-2)$
Synthetic Division

Factor a quadratic

$$
x^{2}+6 x+9=(x+3)(x+3)
$$

Zeros are $3 i,-3 i,-3$, and 2
Polynomial in
factored form: $\quad\left(x^{2}+9\right)(x-2)(x+3)^{2}$

Example: Factor: $\quad 8 x^{5}-25 y^{3}+80 x^{4}-x^{2} y^{3}+200 x^{3}-10 x^{3}$

$$
\begin{array}{cl}
8 x^{5}+80 x^{4}+200 x^{3}-x^{2} y^{3}-10 x y^{3}-25 y^{3} & \text { rearrange } \\
8 x^{3}\left(x^{2}+10 x+25\right)-y^{3}\left(x^{2}+10 x+25\right) & \text { group and greatest common factors (GCF) } \\
\left(8 x^{3}-y^{3}\right) \cdot\left(x^{2}+10 x+25\right) & \text { regroup } \\
(2 x-y)\left(4 x^{2}+2 x y+y^{2}\right)(x+5)(x+5) & \text { different of cubes and factoring } \\
(2 x-y)\left(4 x^{2}+2 x y+y^{2}\right)(x+5)^{2} &
\end{array}
$$

Example: Factor: $2 \mathrm{x}^{4}+\mathrm{x}^{3}-8 \mathrm{x}^{2}-\mathrm{x}+6$

\[

\]

"A different kind of grouping"

Example: Factor $\mathrm{x}^{2}-4 \mathrm{x}+4-100 \mathrm{y}^{2}$
The polynomial has 4 terms, and it can be grouped...
The first 3 terms separated from the fourth:

$$
\begin{aligned}
& x^{2}-4 x+4 \quad-100 y^{2} \\
& (x-2)(x-2) \quad-100 y^{2} \\
& (x-2)^{2}-100 y^{2} \quad \text { then, difference of squares } \\
& (x-2+10 y)(x-2-10 y)
\end{aligned}
$$

Example: Factor $a^{2}+8 a+16-b^{2}$

$$
\begin{aligned}
& a^{2}+8 a+16-b^{2} \\
& (a+4)(a+4)-b^{2} \\
& (a+4)^{2}-b^{2} \\
& (a+4-b)(a+4+b)
\end{aligned}
$$

Practice Exercises- \rightarrow

1) $x^{6}-7 x^{3}+6$
2) $9 \mathrm{a}^{4} \mathrm{~b}-12 \mathrm{a}^{2} \mathrm{~b}^{4}+4 \mathrm{~b}^{7}$
3) $x^{6}-2 x^{5}+x^{4}-x^{2}+2 x-1$
4) $x^{2}-y^{2}-10 y-25$
5) $25-x^{2}-4 x y-4 y^{2}$
6) $2 x^{3}-3 a x^{2}-18 x+27 a$
7) $20 x^{3}-8 x^{2}-35 x+14=0$
8) $x^{2}(x-2)+x(x-2)^{2}=0$
9) $27 x^{3}+21 x^{2}-14 x-8$
10) $\left(a^{2}+2 a\right)^{2}-2\left(a^{2}+2 a\right)-3$
11) $x^{\frac{3}{2}}+5 x^{\frac{-1}{2}}-6 x^{\frac{1}{2}}=0$
12) $\left(x^{2}+1\right)^{2}-7\left(x^{2}+1\right)+10$

Solve with long division. Then, check answer (applying the remainder/factor theorems).

1) $x^{4}+8 x^{3}+5 x^{2}-38 x+24 \div(x+1)$
2) $x^{3}-10 x^{2}+6 \div(x-2)$
3) $x^{4}-x^{2}-3 \div(x-\sqrt{2})$
4) $x^{5}+4 x^{4}+6 x^{3}+18 x^{2}-27 x-162 \div\left(x^{2}+9\right)$
5) $x^{2}-4 x-2 \div[x-(3+4 i)]$
6) $x^{6}-4 x^{3}+6 x^{2}+10 \div\left(2 x^{2}+5\right)$
7) Find the factors of $x^{4}+x^{3}-x^{2}+x-2$
8) Find a 4th degree polynomial with zeros $3 i$ and $-1,-1$ has a multiplicity of 2 .
9) A) Write a quadratic equation in standard form whose solutions are $(2+5 i)$ and $(2-5 i)$
B) Now, write a cubic equation whose solutions (zeros) are $-1,2+5 i$, and $2-5 i$
C) And, finally, write a quartic equation in factored form whose solutions (zeros) are $-1,2+5 i$, and $2-5 i$
10) Using synthetic division, determine the following:
A) $x^{3}+7 x-1 \div(x-2)$
B) $3 x^{3}-2 x^{2}+5 x+1 \div(3 x+1)$
11) Why can't +1 be a possible root of

$$
f(x)=3 x^{4}+x^{3}+9 x^{2}+6 x+15 ?
$$

(in other words, why is $(x-1)$ NOT a factor?)
6) $g(x)=2 x^{3}-10 x^{2}+200 x-1000$

Consider the possible rational roots.
Which ones should you omit?
Which should you test first?
Explain.
7) Find the zeroes: $f(x)=x^{6}+6 x^{5}+15 x^{4}+36 x^{3}+54 x^{2}$
8) Let $g(x)=2 x^{3}-5 x^{2}-4 x+3$

Find the possible rational zeros of g

Determine the complete factorization

What are the x -intercepts? The y -intercept?

Sketch the graph

Polynomials Concepts: Graphing
Sketch the following polynomial:

$$
y=\frac{1}{10}(x+3)(x-2)(x-5)^{2}
$$

Label the intercepts...

Write the equation of the polynomial in the following graph:

Write the equation of the polynomial in the following graph:

The following are results of synthetic division from the function $Q(x)$ and selected linear binomials....

1) What is $Q(3)$?
2) Find $\frac{Q(x)}{x+2}$
3) Find the equation of the polynomial $\mathrm{Q}(\mathrm{x})$ in standard form.
4) Write the equation of the polynomial as a product of linear factors (or factored form)

Solutions $-\boldsymbol{\rightarrow}$

1) $x^{6}-7 x^{3}+6$
$\left(x^{3}-1\right)\left(x^{3}-6\right)$
$(x-1)\left(x^{2}+x+1\right)\left(x^{6}-6\right)$
2) $x^{2}-y^{2}-10 y-25$

$$
\begin{gathered}
x^{2}-1 \cdot\left(y^{2}+10 y+25\right) \\
x^{2}-(y+5)(y+5) \\
x^{2}-(y+5)^{2} \\
(x+y+5)(x-y-5)
\end{gathered}
$$

7) $20 x^{3}-8 x^{2}-35 x+14=0$

Group the 1st and 3rd terms; Group the 2 nd and 4 th terms. Then, factor (GCF)

$$
5 x\left(4 x^{2}-7\right)+(-2)\left(4 x^{2}-7\right)=0
$$

Regroup: $(5 x-2)\left(4 x^{2}-7\right)=0$
Solve: $x=2 / 5 \quad$ or $x= \pm \sqrt{\frac{7}{4}}$
10) $\left(a^{2}+2 a\right)^{2}-2\left(a^{2}+2 a\right)-3$

$$
\text { Let } B=\left(a^{2}+2 a\right)
$$

$$
B^{2}-2 B-3
$$

$$
(B-3)(B+1)
$$

$$
\left(a^{2}+2 a-3\right)\left(a^{2}+2 a+1\right)
$$

$$
(a-1)(a+3)(a+1)(a+1)
$$

2) $9 \mathrm{a}^{4} \mathrm{~b}-12 \mathrm{a}^{2} \mathrm{~b}^{4}+4 \mathrm{~b}^{7}$
GCF $\quad b \cdot\left[9 a^{4}-12 a^{2} b^{3}+4 b^{6}\right]$
$b \cdot\left(3 a^{2}-2 b^{3}\right)\left(3 a^{2}-2 b^{3}\right)$

$$
b\left(3 a^{2}-2 b^{3}\right)^{2}
$$

$$
\begin{array}{ll}
25-x^{2}-4 x y-4 y^{2} & \text { 6) } 2 x^{3}-3 a x^{2}-18 x+27 a \\
25-\left(x^{2}+4 x y+4 y^{2}\right) & x^{2}(2 x-3 a)-9(2 x-3 a) \\
25-(x+2 y)(x+2 y) & (2 x-3 a)\left(x^{2}-9\right) \\
25-(x+2 y)^{2} & (2 x-3 a)(x+3)(x-3)
\end{array}
$$

$$
\begin{gathered}
\text { 3) } x^{6}-2 x^{5}+x^{4}-x^{2}+2 x-1 \\
x^{4}\left(x^{2}-2 x+1\right)-1\left(x^{2}-2 x+1\right) \\
\left(x^{4}-1\right)\left(x^{2}-2 x+1\right) \\
\left(x^{2}-1\right)\left(x^{2}+1\right)(x-1)(x-1) \\
(x+1)(x-1)\left(x^{2}+1\right)(x-1)^{2} \\
(x+1)\left(x^{2}+1\right)(x-1)^{3} \\
\text { 6) } 2 x^{3}-3 a x^{2}-18 x+27 a \\
x^{2}(2 x-3 a)-9(2 x-3 a) \\
(2 x-3 a)\left(x^{2}-9\right) \\
(2 x-3 a)(x+3)(x-3)
\end{gathered}
$$

$$
(5-x-2 y)(5+x+2 y)
$$

9) $27 x^{3}+21 x^{2}-14 x-8$

Group 1st and 4th terms; Group 2nd and 3rd terms..

$$
27 x^{3}-8+21 x^{2}-14 x
$$

$$
27 x^{3}-8+7 x(3 x-2) \quad \text { GCF }
$$

$$
(3 x-2)\left(9 x^{2}+6 x+4\right)-7 x(3 x-2) \text { Difference of Cubes }
$$

$$
(3 x-2)\left[\left(9 x^{2}+6 x+4\right)-7 x\right] \quad \text { ReGroup }
$$

$$
(3 x-2)\left(9 x^{2}-x+4\right)
$$

12) $\left(x^{2}+1\right)^{2}-7\left(x^{2}+1\right)+10$

Let $U=x^{2}+1$

$$
\mathrm{U}^{2}-7 \mathrm{U}+10
$$

$$
(\mathrm{U}-2)(\mathrm{U}-5)
$$

$$
\left(x^{2}+1-2\right)\left(x^{2}+1-5\right)
$$

$$
\left(x^{2}-1\right)\left(x^{2}-4\right)
$$

$$
(x+1)(x-1)(x+2)(x-2)
$$

NOT a polynomial...
(fractional and negative exponents)

1) $x^{4}+8 x^{3}+5 x^{2}-38 x+24 \div(x+1)$

$$
\begin{array}{r}
x^{3}+7 x^{2}-2 x-36+\frac{60}{x+1} \\
-\frac{x^{4}+x^{3}}{x^{4}+8 x^{3}+5 x^{2}-38 x+24} \\
-\frac{7 x^{3}+5 x^{2}}{-7 x^{3}+7 x^{2}} \\
-\frac{-2 x^{2}-38 x}{} \\
-\frac{-3 x-36}{-36 x+24}
\end{array}
$$

(using the remainder theorem)

$$
\begin{aligned}
f(-1)=(-1)^{4}+8(-1)^{3}+5(-1)^{2}-38(-1)+24 & = \\
1+-8+5+38+24 & =60
\end{aligned}
$$

also, synthetic division:

$$
\begin{gathered}
-1
\end{gathered} \begin{array}{ccccc}
1 & 8 & 5 & -38 & 24 \\
& -1 & -7 & 2 & 36 \\
& 1 & 7 & -2 & -36 \\
\hline
\end{array}
$$

$$
x^{3}+7 x^{2}-2 x-36+\frac{60}{x+1}
$$

(using the remainder theorem)

$$
\begin{aligned}
f(2)=(2)^{3} & -10(2)^{2}+6= \\
& 8-40+6=-26
\end{aligned}
$$

also, synthetic division:

2 \begin{tabular}{c}

$|$| 1 | -10 | 0 | 6 |
| :---: | :---: | :---: | :---: |
| | 2 | -16 | -32 |
| 1 | -8 | -16 | -26 |

\end{tabular}

$$
x^{2}-8 x-16-\frac{26}{x-2}
$$

3) $\mathrm{x}^{4}-\mathrm{x}^{2}-3 \div(\mathrm{x}-\sqrt{2})$

$$
\begin{gathered}
x-\sqrt{2} \begin{array}{c}
x^{3}+\sqrt{2} x^{2}+x+\sqrt{2}+\frac{-1}{x-\sqrt{2}} \\
\frac{x^{4}+0 x^{3}-x^{2}+0 x-3}{} \\
\frac{x^{4}-\sqrt{2} x^{3}}{\sqrt{2} x^{3}-x^{2}} \\
\frac{-\sqrt{2} x^{3}-2 x^{2}}{x^{2}+0 x} \\
\frac{-x^{2}-\sqrt{2} x}{\sqrt{2} x-3} \\
\frac{-\sqrt{2} x-2}{-1}
\end{array}
\end{gathered}
$$

(using the remainder theorem)

$$
\begin{aligned}
f(\sqrt{2})=(\sqrt{2})^{4}-(\sqrt{2})^{2}-3 & = \\
4-2-3 & =-1
\end{aligned}
$$

also, synthetic division:

$$
\begin{aligned}
& \sqrt{2} \left\lvert\, \begin{array}{ccccc}
1 & 0 & -1 & 0 & -3 \\
& \sqrt{2} & 2 & \sqrt{2} & 2
\end{array}\right. \\
& \begin{array}{ccccc|}
1 & \sqrt{2} & 1 & \sqrt{2} & -1
\end{array} \\
& x^{3}+\sqrt{2} x^{2}+x+\sqrt{2}+\frac{-1}{x-\sqrt{2}}
\end{aligned}
$$

Solve with long division.
4) $x^{5}+4 x^{4}+6 x^{3}+18 x^{2}-27 x-162 \div\left(x^{2}+9\right)$

$$
\begin{aligned}
& x^{3}+4 x^{2}-3 x-18 \\
& \left(x^{2}+9\right) \begin{array}{l}
x^{5}+4 x^{4}+6 x^{3}+18 x^{2}-27 x-162 \\
-x^{5}+9 x^{3}
\end{array} \\
& \quad \begin{array}{r}
4 x^{4}-3 x^{3}+18 x^{2} \\
-\frac{4 x^{4}+36 x^{2}}{-3 x^{3}-18 x^{2}-27 x} \\
-\quad-3 x^{3} e^{-27 x} \\
-18 x^{2} \\
-\quad-18 x^{2} \\
\hline
\end{array}
\end{aligned}
$$

5) $x^{2}-4 x-2 \div[x-(3+4 i)]$

$$
\begin{aligned}
& {[x-(3+4 i)] } x-1 \\
& \frac{x^{2}-4 x-2}{-} x^{2}-3 x-4 x i \\
&-x-2+4 x i \\
&-5+4 x i-4 i
\end{aligned}
$$

$$
\mathrm{x}+4 i-1+\frac{-21+8 i}{\mathrm{x}-(3+4 i)}
$$

$$
4 i \cdot \frac{\mathrm{x}-(3+4 i)}{\mathrm{x}-(3+4 i)}
$$

$$
\frac{4 i \mathrm{x}-12 i-16 i^{2}}{\mathrm{x}-(3+4 i)}+\frac{-21+8 i}{\mathrm{x}-(3+4 i)}=\frac{-5+4 \mathrm{x} i-4 i}{\mathrm{x}-(3+4 i)}
$$

$$
x^{3}+4 x^{2}-3 x-18
$$

(using the remainder theorem)

$$
\begin{aligned}
& f(3+4 i)=(3+4 i)^{2}-4(3+4 i)-2 \\
& 9+24 i+16 i^{2}-12-16 i-2 \\
& 8 i-21
\end{aligned}
$$

(using synthetic division)

$$
\begin{gathered}
\begin{array}{rrr}
1 & -4 \\
& 3+4 i & -2 \\
& -19+8 i \\
1 & -1+4 i & -21+8 i
\end{array} \\
\\
\end{gathered}
$$

6) $x^{6}-4 x^{3}+6 x^{2}+10 \div\left(2 x^{2}+5\right)$

$$
\begin{aligned}
& \begin{array}{c}
\frac{1}{2} x^{4}-\frac{5}{4} x^{2}-2 x+\frac{49}{8} \\
\left.\cline { 2 - 3 }+5 x^{2}+5\right) \\
x^{6}+0 x^{5}+0 x^{4}-4 x^{3}+6 x^{2}+0 x+10
\end{array} \\
& \frac{-x^{6}+\frac{5}{2} x^{4}}{-\frac{5}{2} x^{4}-4 x^{3}+6 x^{2}} \\
& \frac{-\frac{5}{2} x^{4}-\frac{25}{4} x^{2}}{-4 x^{3}+\frac{49}{4} x^{2}} \\
& -\frac{-4 x^{3}}{\frac{49}{4} x^{2}+10 x+10} \\
& -\frac{49}{4} x^{2}+\frac{245}{8} \\
& 10 x-\frac{165}{8}
\end{aligned}
$$

$$
\frac{1}{2} x^{4}-\frac{5}{4} x^{2}-2 x+\frac{49}{8}+\frac{10 x-\frac{165}{8}}{\left(2 x^{2}+5\right)}
$$

1) Find the factors of $x^{4}+x^{3}-x^{2}+x-2$

SOLUTIONS
Polynomial Concepts: Questions
Possible rational roots are $1,-1,2,-2 \ldots$

$$
f(1)=1+1-1+1-2=0 \quad \text { so, } 1 \text { is a root... }
$$

$$
\begin{gathered}
x^{3}+2 x^{2} \quad+x+2 \\
x^{2}(x+2)+1(x+2) \\
\left(x^{2}+1\right)(x+2)
\end{gathered}
$$

$(x-1)$

$$
x^{3}+2 x^{2}+x+2
$$

(recognizing a pattern, we can use grouping to factor the remaining part.)

$$
(x-1)(x+2)\left(x^{2}+1\right)
$$

2) Find a 4th degree polynomial with zeros $3 i$ and $-1,-1$ has a multiplicity of 2 .

Since $3 i$ is a zero, $-3 i$ must be a zero... (conjugate root theorem)
Since -1 has a multiplicity of 2 , there are two zeros that are $-1 \ldots$

$$
\begin{array}{ccc}
3 i & -3 i \quad-1 \quad-1 \\
(\mathrm{x}-3 i)(\mathrm{x}+3 i)(\mathrm{x}+1)(\mathrm{x}+1) & \left(\mathrm{x}^{2}+9\right)(\mathrm{x}+1)^{2}
\end{array}
$$

3) A) Write a quadratic equation in standard form whose solutions are $(2+5 i)$ and $(2-5 i)$

$$
\quad \begin{array}{|c}
\mathrm{x}^{2}-4 \mathrm{x}+29 \\
\hline
\end{array}
$$

B) Now, write a cubic equation whose solutions (zeros) are $-1,2+5 i$, and $2-5 i$

$$
\begin{aligned}
& -1 \quad 2+5 i \quad 2-5 i \\
& (\mathrm{x}+1)(\mathrm{x}-(2+5 i)(\mathrm{x}-(2-5 i) \\
& (\mathrm{x}+1)\left(\mathrm{x}^{2}-4 \mathrm{x}+29\right) \quad \text { or } \\
& \mathrm{x}^{3}-3 \mathrm{x}^{2}+25 \mathrm{x}+29
\end{aligned}
$$

C) And, finally, write a quartic equation in factored form whose solutions (zeros) are $-1,2+5 i$, and $2-5 i$

Since complex numbers must come in pairs,
the fourth zero must be -1...

$$
\begin{gathered}
(x+1)(x+1)(x-(2+5 i)(x-(2-5 i) \\
(x+1)^{2}(x-2-5 i)(x-2+5 i)
\end{gathered}
$$

4) Using synthetic division, determine the following:

$$
\begin{aligned}
& \text { A) } x^{3}+7 x-1 \div(x-2) \\
& 2 \left\lvert\, \begin{array}{rrrl}
1 & 0 & 7 & -1 \\
& 2 & 4 & 22
\end{array}\right. \\
& \begin{array}{llll}
1 & 2 & 11 & 21 \\
x^{2}+2 x+11+\frac{21}{(x-2)}
\end{array}
\end{aligned}
$$

B) $3 x^{3}-2 x^{2}+5 x+1 \div(3 x+1)$
first, rewrite: $\quad\left(3 x^{3}-2 x^{2}+5 x+1\right) \div 3\left(x+\frac{1}{3}\right)$

5) Why can't +1 be a possible root of

$$
f(x)=3 x^{4}+x^{3}+9 x^{2}+6 x+15 ?
$$

(in other words, why is $(x-1)$ NOT a factor?)
6) $g(x)=2 x^{3}-10 x^{2}+200 x-1000$

Consider the possible rational roots. Which ones should you omit?
Which should you test first?
Explain.

According to factor/remainder theorem,
$f(1)$ must equal 0 in order for 1 to be a root.
SOLUTIONS Since all the polynomial terms are >0, there is no way synthetic substitution will lead to 0 ! (the result must be greater than 0)

Since the degree of the trinomial is 3 , there are up to 3 possible rational roots.
The possible roots include all factors of 1000. (positive and negative)
divided by 1 and 2
Since $g(\mathrm{c})$ must equal zero if c is a root, we can eliminate 1 and -1

> (result is much less than zero)
$-10 x^{2}+200 x-1000$ will end in zero for all integers we can skip $2,-2,4,-4,8,-8$
(because the results will not end in zero)
So, start with 5 and -5
7) Find the zeroes: $f(x)=x^{6}+6 x^{5}+15 x^{4}+36 x^{3}+54 x^{2}$
(factor the GCF) $x^{2} \cdot\left(x^{4}+6 x^{3}+15 x^{2}+36 x+54\right)$
(rational root theorem) possible roots are $1,2,3,6,9,18,27,54$

$$
-1,-2,-3,-6,-9,-18,-27,-54
$$

since all the coefficients are positive, this eliminates all positive roots...
so, possible roots are $-1,-2,-3,-6,-9,-18,-27,-54$
test $-1: 1-6+15-36+54=28 \ldots$ remainder is 28 (not a root)
test -2: $16-48+60-72+54=10 \ldots$ remainder is 10 (not a root)
test -3: $81-162+135-108+54=0 \ldots$ remainder is 0 (factor!)

factors: $x^{2}(x+3)^{2}\left(x^{2}+6\right)$
zeros: 0 (multiplicity of 2); -3 (multiplicity of 2) and, $\sqrt{6}-\sqrt{6}$
test -3: $-27+27-18+18=0$ remainder is 0 (-3 is a zero again)

$$
\begin{aligned}
& \qquad-3 \left\lvert\, \begin{array}{cccc}
1 & 3 & 6 & 18 \\
& -3 & 0 & -18
\end{array}\right. \\
& \begin{array}{cccc}
1 & 0 & 6 & 0 \\
x^{2}+6 \\
\text { remaining zeros are } & -\sqrt{6} \text { and } N \sqrt{6}
\end{array}
\end{aligned}
$$

8) Let $g(x)=2 x^{3}-5 x^{2}-4 x+3$

Find the possible rational zeros of g
Determine the complete factorization
What are the x -intercepts? The y -intercept?

Sketch the graph
degree is 3
end behavior is "up right" and "down left" x-intercepts and y-intercept are labeled
$\begin{array}{ll}\text { 'p's: } & 1,3 \\ \text { 'q's: } & 1,2\end{array}$ possible rational roots: $1,-1,3,-3,1 / 2,-1 / 2,3 / 2,-3 / 2$ 'q's: 1, 2
$g(-1)=2(-1)^{3}-5(-1)^{2}-4(-1)+3=0 \quad-1$ is a zero; $(\mathrm{x}+1)$ is a factor

[^0]Sketch the following polynomial:

$$
y=\frac{1}{10}(x+3)(x-2)(x-5)^{2}
$$

Label the intercepts...

The above polynomial is in factored form or intercept form, so the x -intercepts (zeros) are shown:

$$
(-3,0) \quad(2,0) \quad(5,0)
$$

Note: $(x-5)$ has a multiplicity of 2 , so there will be a "bounce" at $(5,0)$

The y-intercept occurs when the function is at $\mathrm{x}=0 . \quad(0, ?)$

$$
\begin{aligned}
y= & \frac{1}{10}(0+3)(0-2)(0-5)^{2}=-15 \\
& y \text {-intercept: }(0,-15)
\end{aligned}
$$

Write the equation of the polynomial in the following graph:

Write the equation of the polynomial in the following graph:
Step 1: Identify the x -intercepts
$(-2,0)(1,0)$ and $(4,0)$, so the zeros are $-2,1$, and 4

$$
y=a(x+2)(x-1)(x-4)
$$

Step 2: Note the end behavior and any 'bounces'...
There is a "bounce" at $(1,0)--->$ multiplicity of 2 The end behavior indicates a polygon of degree 4

$$
y=a(x+2)(x-1)^{2}(x-4)
$$

Step 3: Find the "a" value by substituting another point...

$$
1=a(0+2)(0-1)^{2}(0-4) \quad 1=-8 a \quad a=-1 / 8
$$

$$
y=-\frac{1}{8}(x-1)^{2}(x-4)(x+2)
$$

Step 1: Identify the x -intercepts
$(-3,0) \quad(2,0) \quad(4,0)$, so the 'zeros' are $-3,2$, and $4 .$.

$$
y=a(x+3)(x-2)(x-4)
$$

Step 2: Note the end behavior and any 'bounces'...
There are no 'bounces' or multiplicity of the zeros.... And, the end behavior indicates a cubic...

Step 3: Find the "a" value by substituting another point...

$$
\begin{gathered}
\text { Using }(0,4) \quad 4=a(0+3)(x-2)(x-4) \\
4=24 a \\
a=1 / 6 \\
y=\frac{1}{6}(x+3)(x-2)(x-4)
\end{gathered}
$$

1) What is $Q(3)$? (Utilize the remainder theorem!) $\quad Q(3)=-56 \quad$ It's the remainder of $Q(x) \div(x-3)$
2) Find $\frac{Q(x)}{x+2} \quad$ (Recognizing Synthetic Division)

3) Find the equation of the polynomial $\mathrm{Q}(\mathrm{x})$ in standard form.

Pick any from above, convert to polynomials, and multiply!

\[

\]

4) Write the equation of the polynomial as a product of linear factors (or factored form)

Pick out one of the roots (i.e. remainder is 0):
either -1 or 4

Then, divide by the other root:

Thanks for visiting. (Hope it helped!)
If you have questions, suggestions, or requests, let us know. Enjoy.

Also, at Facebook, Google+, Pinterest, TES, and TeachersPayTeachers

[^0]: x-intercepts: $(-1,0)(1 / 2,0)(3,0)$
 y-intercept: $(0,3)$

