Piecewise Functions and

 $f(x)$ Notation

Includes notes, examples, graphs, strategies, and practice questions (with solutions)

I. Functional Notation

What is it? A way to express a function.

Examples: $\quad f(\mathrm{x})=3 \mathrm{x}+8$

$$
g(x)=6 x^{2}-3 x+7
$$

$$
h(t)=3 x+4 t-5
$$

f identifies the function
x (inside the parentheses) is the "argument"
$f(2)=3(2)+8=14$
(substitute the x for 2)
g identifies the function
x (inside the parentheses) is the "argument"

$$
g(4)=6(4)^{2}-3(4)+7
$$

(substitute each x with a 4)

$$
=96-12+7=91
$$

$$
\begin{aligned}
g(-1) & =6(-1)^{2}+3(-1)+7 \\
& =6 \cdot 1+(-3)+7=10
\end{aligned}
$$

(replaced each x with -1)
h identifies the function
t (inside the parentheses) is the "argument"

$$
h(3)=3 x+4(3)-5
$$

(substitute the t with a 3)

$$
=3 x+7
$$

$$
\begin{array}{r}
f(\mathrm{a})=3(\mathrm{a})+8= \\
3 \mathrm{a}+8
\end{array}
$$

$$
\begin{aligned}
h(\mathrm{x}+5) & =3 \mathrm{x}+4(\mathrm{x}+5)-5 \\
& =3 \mathrm{x}+4 \mathrm{x}+20-5=7 \mathrm{x}+15
\end{aligned}
$$

(replaced the t with $(x+5)$)
II. $f(\mathrm{x})$ vs. y

What is the difference between $f(\mathrm{x})=4 \mathrm{x}+3$ and $\mathrm{y}=4 \mathrm{x}+3$?
The notation is different; everything else is the same... Every input x will have the same output in either expression.
$f(0)=3$
$f(3)=15$

$$
\begin{aligned}
& y=4(0)+3=3 \\
& y=4(3)+3=15
\end{aligned}
$$

What is the difference between $f(\mathrm{x})=\sqrt{\mathrm{x}}$ and $\mathrm{y}=\sqrt{\mathrm{x}}$?
In this case, there is a subtle difference: $f(\mathrm{x})$ is a function but, y could be a relation (or function).

$$
f(4)=2
$$

$$
y=\sqrt{4}= \pm 2
$$

What is it? A function that uses different calculations in different parts of its domain. (the formula will depend on the input!)

Examples:

$$
\begin{aligned}
& f(\mathrm{x})=\left\{\begin{array}{cc}
(\text { formula } & \text { (domain) } \\
\mathrm{x}_{2}+1 & \mathrm{x} \leq 4 \\
5 & 4<\mathrm{x}<8 \\
-2 \mathrm{x}+21 & 8 \leq \mathrm{x}
\end{array}\right. \\
& f(-2)=(-2)+1=-1 \\
& f(4)=5 \\
& f(8)=-2(8)+21=5
\end{aligned}
$$

Note: this is a continuous function

$$
h(t)=\left\{\begin{array}{cl}
\text { (formula) } & \text { (domain) } \\
\mathrm{t}-6 & \mathrm{t}<2 \\
3 & \mathrm{t}=2 \\
\mathrm{t}^{2}+2 & \mathrm{t}>2
\end{array}\right.
$$

$$
h(0)=-6
$$

$$
h(2)=3
$$

$$
h(4)=(4)^{2}+2=18
$$

Example: Graph

$$
\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ccc}
\mathrm{x}+4 & \mathrm{x} \leq-3 & \begin{array}{c}
\text { For } \mathrm{x} \leq-3 \\
\text { Go to }-3
\end{array} \\
3 & -3<\mathrm{x} \leq 4 \\
\mathrm{x}^{2} & \mathrm{x}>4 & \begin{array}{l}
\mathrm{f}(-3)=1 \\
\text { Closed circle }
\end{array}
\end{array} \quad \begin{array}{l}
\text { Extend } \mathrm{x}+4 \text { for } \\
\text { the rest of the domain }
\end{array}\right.
$$

For $\mathrm{x}>4$
Go to 4
$\mathrm{f}(4)=16$
Open circle
Open circle

Here are 2 approaches to graphing a piecewise function:
Method 1: "Endpoint and Extend"
This is more effective for linear pieces.
Example:

$$
f(x)=\left\{\begin{array}{ccc}
2 x+4 & \text { if } & x<-3 \\
1 & \text { if } & -3 \leq x<4 \\
-x+2 & \text { if } & x \geq 4
\end{array}\right.
$$

Start at $\mathrm{x}=-3$:

$$
f(-3)=2(-3)+4=-2
$$

since $x<-3$, it's an open circle
$2 \mathrm{x}+4$ is a line with slope 2 , so extend a line to the left...

Start at $\mathrm{x}=-3$:
$f(-3)=1$
since $x \geq-3$, it's a closed circle " $\mathrm{y}=1$ " is a horizontal line that extends to $\mathrm{x}=4$ (open circle)
Start at $\mathrm{x}=4$:
$f(4)=-(4)+2=-2$
since $x \geq 4$, it's a closed circle
$-\mathrm{x}+2$ is a line with slope -1 , so extend a line to the right

"Endpoint and Extend"
For each domain piece:

1) Find endpoint
2) Open/Close circle
3) Extend

Method 2: "Graph and Cut"

Example:

$$
f(x)=\left\{\begin{array}{llc}
|x+3| & \text { if } & x<-1 \\
x^{2}+1 & \text { if } & -1 \leq x<2 \\
\frac{1}{3} x-5 & \text { if } & x \geq 2
\end{array}\right.
$$

absolute value function $|x+3|$
parabola $\mathrm{x}^{2}+1$
line $\frac{1}{3} x-5$


```
"Graph and Cut"
For each domain piece:
1) Graph the function
2) Cut at the endpoints of the domain
3) Open/Close circle
```


Example: Find the value(s) of x , such that $f(\mathrm{x})=2$.
Then, graph to confirm your answer.

$$
f(x)=\left\{\begin{array}{cc}
2 x^{2}-6 & \text { if } x<1 \\
2 & \text { if } x=1 \\
-8+x & \text { if } x>1
\end{array}\right.
$$

obviously, $f(1)=2$
then, for the 3rd equation: $-8+\mathrm{x} \ldots$

$$
f(10)=2
$$

and, for the 1st equation: $2 x^{2}-6=2$

$$
f(-2)=2 \quad 2 \mathrm{x}^{2}=8, ~=-2 \text { or } 2 \ldots .
$$

Since this equation only applies if $\mathrm{x}<1$, we only consider -2
$x=-2,1,10$

Example: If $g(\mathrm{x})$ is continuous, what are m and d ? Graph this continuous piecewise function to verify.

$$
g(x)=\left\{\begin{array}{cc}
2 x^{2}+5 & \text { if } x<1 \\
m & \text { if } x=1 \\
4 x+d & \text { if } x>1
\end{array}\right.
$$

for $\mathrm{x}<1$, the equation $2 \mathrm{x}^{2}+5$ ends at $(1,7)$
therefore, at $\mathrm{x}=1, \mathrm{~m}$ must be 7
and, since m is $7,4 \mathrm{x}+\mathrm{d}=7 \ldots . \quad \mathrm{d}$ must be 3

$$
\text { (at } x=1 \text {, all } 3 \text { equations equal } 7 \text {) }
$$

Examples: Write each equation as a piecewise function (i.e. using linear equations)

1) $y=3|x+2|+4$

> slope will be -3 on the left and +3 on the right
> going through the point $(-2,4)$, we can determine the lines vertex

$$
\begin{cases}-3 x+(-2) & \text { if } x<-2 \\ 3 x+10 & \text { if } x \geq-2\end{cases}
$$

2) $y=5-|x+7|$

$$
y=-1|x+7|+5
$$

$$
\text { vertex is at }(-7,5)
$$

$$
\text { slope is }-1 \text { for } x \leq-7
$$

$$
\left\{\begin{array}{ccc}
-x-2 & \text { if } & x \leq-7 \\
x+12 & \text { if } & x>-7
\end{array}\right.
$$

$$
1 \text { for } x>-7
$$

3) $y=3|x+6|-2$
vertex where slopes change is $(-6,-2)$

$$
f(x)= \begin{cases}3 x+16 & \text { if } x>-6 \\ -3 x-20 & \text { if } x \leq-6\end{cases}
$$

Example: Graph the following $\mathrm{f}(\mathrm{x})= \begin{cases}5 & \text { if } \mathrm{x}<-4 \\ 3 \mathrm{x}+8 & \text { if }|\mathrm{x}| \leq 4 \\ |\mathrm{x}-7| & \text { if } \mathrm{x}>4\end{cases}$

Example: Application of Step Function
A company's banquet will be held at a club where the tables seat 8 people.
Show a graph representing the number of tables needed as a function of guests..
Then, write the equation...
Since you can't have "partial people",

$$
f(x)=\left[\left[\frac{x}{8}\right]\right]+1
$$

where x is number of guests..

Example:

What is the initial balance?
Initial balance occurs when $t=0 \ldots$
Therefore, initial balance is 2000 dollars

How many withdrawals were made?

If a withdrawal occurs, the amount will "gap lower"... This occurs 3 times...

How many deposits?

If a deposit occurs, the amount will "gap higher".. This occurs once.

Explain a possible representation of the graph.
Each discontinuity represents a speed limit sign.
The 65 mph would occur on an interstate highway.
The drop to 25 mph would occur when the road passes through a town.

[^0]

Practice Exercises $-\rightarrow$

Solving and Graphing $f(\mathrm{x})$ Functions
Find the solutions AND graph each function.

1) $f(x)=3 x+2$
a) $f(2)=$
b) $f(0)=$
c) $f(-6)=$

2) $f(x)=|x-4|+1$
a) $f(5)=$
b) $f(-5)=$
c) $f(2)=$

3) $f(x)= \begin{cases}x+3 & \text { if } x<4 \\ x-3 & \text { if } x \geq 4\end{cases}$
a) $f(0)=$
b) $f(7)=$
c) $f(4)=$

4) $f(x)=\left\{\begin{array}{cl}2 x-7 & \text { if } x<-7 \\ 3 & \text { if }-7 \leq x<5 \\ x^{2}-12 & \text { if } x \geq 5\end{array}\right.$
a) $f(-8)=$
b) $f(0)=$
c) $f(7)=$

I. Function notation - answer the following:

$$
\text { a) } f(x)=\left\{\begin{array}{l}
x+2, \text { if } x<3 \\
x+7, \text { if } x \geq 3
\end{array}\right\}
$$

c)

$$
\begin{gathered}
j(x)=\left\{\begin{aligned}
&-10, \text { if } x<0 \\
& 0, \\
& \text { if } x=0 \\
& 10, \\
& \text { if } x>0
\end{aligned}\right. \\
j(-25)= \\
j(1 / 2)= \\
j(0)=
\end{gathered}
$$

II. Using a graph -- answer the following

$f(-5)=$
$f(-1)=$
$f(1)=$
$f(7)=$
b)

$$
\begin{aligned}
& g(x)=\left\{\begin{array}{rlc}
3 x+2, & \text { if } & x<-6 \\
5, & \text { if } & -6 \leq x<10 \\
x^{2}, & \text { if } & x \geq 10
\end{array}\right. \\
& g(0)= \\
& g(-6)= \\
& g(10)=
\end{aligned}
$$

d)

$$
\begin{aligned}
& h(\mathrm{t})=\left\{\begin{array}{cl}
\sqrt{(-\mathrm{t})}, & \text { if } \mathrm{t}<0 \\
5, & \text { if } 0 \leq \mathrm{t}<5 \\
-2 \mathrm{x}, & \text { if } 5 \leq \mathrm{t}
\end{array}\right. \\
& h(-4)= \\
& h(5)= \\
& h(10)=
\end{aligned}
$$

$g(-3)=$
$g(4)=$
$g(5)=$
$g(-20)=$
III. Identifying the Piecewise function -- write an expression to describe the graph

$$
h(\mathrm{x})=\{
$$

IV: Graphing Piecewise functions

$$
f(x)=\left\{\begin{array}{r}
4, \text { if } x<3 \\
-x+3, \text { if } x \geq 3
\end{array}\right.
$$

V. Use a minimal number of "pieces" to describe the graphs...
1)

$$
f(x)=\{
$$

3)

$$
n=\{
$$

2)

$g(x)=\{$
4)

$n=-\{$

Graph the following piecewise functions. Then, identify the domain and range.
1)

$$
f(x)=\left\{\begin{array}{cll}
x+3 & \text { if } & x<2 \\
-1 & \text { if } & 2 \leq x<6 \\
-x+10 & \text { of } & x \geq 6
\end{array}\right.
$$

domain:
range:
2)

$$
g(x)=\left\{\begin{array}{cc}
3-4 x & \text { if } \\
5<0 \\
5 & \text { if } \\
-x+10 & \text { if } \\
-x \geq 12
\end{array}\right.
$$

domain:
range:
3)

$$
h(t)=\left\{\begin{array}{cc}
2 t+2 & \text { if } 0<t \leq 4 \\
t+6 & \text { if } 4<t \leq 8 \\
14 & \text { if } t>8
\end{array}\right.
$$

domain:
range:

Describe the following piecewise functions. Determine the domain and range.
Piecewise Functions: Linear pieces
4)

domain:
range:
5)

domain:
range:
6)

domain:
range:

Graph the following piecewise functions. Then, identify the domain and range.
7)

$$
f(x)= \begin{cases}x+15 & \text { if } \quad x \leq-5 \\ -|x|+2 & \text { if }-5<x<5 \\ \sqrt{x-5}+3 & \text { if } x \geq 5\end{cases}
$$

domain:
range:
8)

domain:
range:
9)

$$
h(x)=\left\{\begin{array}{ccc}
x & \text { if } & x<1 \\
\frac{1}{2}\left(2^{x}\right) & \text { if } & 1 \leq x<4 \\
2|x-10|-4 & \text { if } & x \geq 4
\end{array}\right.
$$

domain:
range:

VI. Piecewise Models (Word Problems) and Concepts

1) A discount book store charges $\$ 4$ per book..

If a customer buys more than 5 , the price drops to $\$ 3.50$ per book...
Write a piecewise function to model the cost of books..
How much would 20 books cost?
2) A store sells t-shirts..

It charges $\$ 10$ per shirt for the first batch of $50 \ldots$
Since the store has the screen design,
the next batch of 50 would cost $\$ 9$ per shirt...
And, all batches after that would cost $\$ 8$ per shirt....
Write a piecewise function describing the cost of shirts...
How much would 120 shirts cost?
3) A shop down the street sells hats...

It charges $\$ 10$ per hat.
If a customer purchases more than 30 hats, the owner offers a $\$ 1$ discount per hat. (\$9 per hat)
If a customer buys more than 50 hats, the owner offers another $\$ 1$ discount (\$8 per hat).

Write a piecewise function to describe the cost of hats.
The math club has a budget of $\$ 300$. How many hats could it buy?
4) Write and graph a piecewise function with the following characteristics.

Domain: all real numbers
Range: $\{-4,2,5\}$
$f(3)=2$ and $f(-3)=5$

5) Match the events with the piecewise function
a) The snow falls for an hour.
b) The snow stops..

Snow
c) A blizzard arrives..
d) The snow melts..

6) Betty and Diane are writing wedding invitations.

Betty starts at 8:00 AM and Diane starts at 10:00 AM.
Betty can write 20 invitations per hour.
And, Diane can write 25 invitations per hour.
a) How many invitations will be written by 2:00 PM?
b) When will they finish 355 invitations?
c) If they write all day, when will Betty and Diane have the same number?
7) You and a friend can each make 1 sandwich every 2 minutes.

At lunchtime, you start making sandwiches for the camp. Ten minutes later, your friend shows up and helps you.

Write and graph a (piecewise) model of sandwiches made as a function of time.

SOLUTIONS - -

Find the solutions AND graph each function.

1) $f(x)=3 x+2$
a) $f(2)=3(2)+2=8$
b) $f(0)=3(0)+2=2$
c) $f(-6)=3(-6)+2=-16$
2) $f(x)=|x-4|+1$
a) $f(5)=|(5)-4|+1=2$
b) $f(-5)=|(-5)-4|+1=10$
c) $f(2)=|(2)-4|+1=3$
vertex: $(4,1)$
absolute value
is "v shaped"

3) $f(x)= \begin{cases}x+3 & \text { if } x<4 \\ x-3 & \text { if } x \geq 4\end{cases}$
a) $f(0)=(0)+3=3$ (1st piece)
b) $f(7)=(7)-3=4$ (2nd piece)
c) $f(4)=(4)-3=1$ (2nd piece)

4) $f(x)=\left\{\begin{array}{cl}2 x-7 & \text { if } x<-7 \\ 3 & \text { if }-7 \leq x<5 \\ x^{2}-12 & \text { if } x \geq 5\end{array}\right.$
a) $f(-8)=2(-8)-7=-23$
b) $f(0)=3$
c) $f(7)=49-12=37$

SOLUTIONS

I. Function notation - answer the following:
a)

$$
\begin{array}{r}
f(x)=\left\{\begin{array}{l}
x+2, \text { if } x<3 \\
x+7, \text { if } x \geq 3
\end{array}\right. \\
f(-5)=(-5)+2=-3 \\
f(3)=\quad(3)+7=10 \\
f(5)=\quad(5)+7=12
\end{array}
$$

c)

$$
\begin{gathered}
j(x)=\left\{\begin{aligned}
-10 & , \text { if } x<0 \\
0 & , \text { if } x=0 \\
10 & \text { if } x>0
\end{aligned}\right. \\
j(-25)=-10 \\
j(1 / 2)=10 \\
j(0)=0
\end{gathered}
$$

II. Using a graph - answer the following

$f(-5)=1$
$f(-1)=2$
$f(1)=2$
$f(7)=0$
b)

$$
\begin{aligned}
& g(x)=\left\{\begin{array}{ccc}
3 x+2, & \text { if } & x<-6 \\
5, & \text { if } & -6 \leq x<10 \\
x^{2}, & \text { if } & x \geq 10
\end{array}\right. \\
& g(0)=\text { since } 0 \text { is between }-6 \text { and } 10 \text {, the output is } 5 \\
& g(-6)=\text { since }-6 \text { is } \geq-6, \text { the output is } 5 \\
& g(10)=(10)^{2}=100
\end{aligned}
$$

d)

$$
h(\mathrm{t})=\left\{\begin{array}{cl}
\sqrt{(-\mathrm{t})}, & \text { if } \mathrm{t}<0 \\
5, & \text { if } 0 \leq \mathrm{t}<5 \\
-2 \mathrm{x}, & \text { if } 5 \leq \mathrm{t}
\end{array}\right.
$$

$$
\begin{aligned}
& h(-4)=\sqrt{(-(-4))}=2 \\
& h(5)=-2(5)=-10 \\
& h(10)=-2(10)=-20
\end{aligned}
$$

$g(-3)=3$
$g(4)=-2$
$g(5)=1$
$g(x)=-x \quad$ if $x \leq 0$
$g(-20)=20$

$$
f(x)=\left\{\begin{array}{lll}
-1 / 2(x) & -3 / 2 & \text { if } x<-1 \\
2 & \text { if }-1 \leq x \leq 3 \\
-x+7 & \text { if } x>3
\end{array}\right.
$$

$$
g(x)= \begin{cases}x+2 & \text { if } x>0 \\ -x-2 & \text { if } x \leq 0\end{cases}
$$

$$
h(x)=\left\{\begin{array}{ccc}
3 & \text { if } x>3 \\
1 & \text { if } x=3 \\
-x & \text { if } x<3
\end{array}\right.
$$

IV: Graphing Piecewise functions

$$
f(x)=\left\{\begin{array}{r}
4, \quad \text { if } x<3 \\
-x+3, \quad \text { if } x \geq 3
\end{array}\right.
$$

V. Use a minimal number of "pieces" to describe the graphs...
1)

$$
f(x)=\left\{\begin{array}{rc}
|x+2|+2 & \text { if } \\
x<3 \\
-|x-6|+5 & \text { if }
\end{array} \quad x \geq 3\right.
$$

3)

$$
h(\mathrm{x})= \begin{cases}\frac{5}{2}|\mathrm{x}+3|-6 & \text { if }-7<\mathrm{x} \leq-1 \\ \frac{2}{5}|\mathrm{x}-4|-3 & \text { if } \mathrm{x}>-1\end{cases}
$$

mathplane.com
2)

$g(\mathrm{x})= \begin{cases}-3|\mathrm{x}+6|+3 & \text { in the interval }(-8,-5] \\ \frac{1}{2}|\mathrm{x}-3|-8 & \text { in the interval }[-5, \infty)\end{cases}$
4)

$p(\mathrm{x})= \begin{cases}-|\mathrm{x}+3|+5 & \text { in the interval }(-\infty, 0) \\ -|\mathrm{x}-5|+7 & \text { in the interval }(0, \infty)\end{cases}$

1) $f(\mathrm{x})=\left\{\begin{array}{cll}\mathrm{x}+3 & \text { if } & \mathrm{x}<2 \\ -1 & \text { if } & 2 \leq \mathrm{x}<6 \\ -\mathrm{x}+10 & \text { of } & \mathrm{x} \geq 6\end{array}\right.$

All x values
(i.e. places on the graph
"left to right")
All $f(x)$ values
(i.e. places on
the graph

> domain: all real numbers

$$
\text { range: } \quad f(x)<5
$$

$$
(-\infty, 5)
$$

"bottom to top")

Since the 3 "pieces" will be lines segments or rays,
we can use an
'endpoint method' to graph.
The endpoint (boundary) of the first piece occurs at $(2,5)$.
Since it is $\mathrm{x}<2$, it's an open circle.
Then, pick a point left of 2 --such as $(0,3) \ldots$
Put that point on the graph and extend a ray from $(2,5)$ through $(0,3)$
The endpoints of the second piece are $(2,-1)$ and $(6,-1)$. Since inputs are $2 \leq \mathrm{x}<6$, the left endpoint is closed and the right endpoint is open...
Finally, the boundary of the 3rd piece occurs at $(6,4) \ldots$ Then, we can draw a ray through $(9,1) \ldots$
2)

$$
g(x)=\left\{\begin{array}{cc}
3-4 x & \text { if } x<0 \\
5 & \text { if } 3 \leq x \leq 7 \\
-x+10 & \text { if } x \geq 12
\end{array}\right.
$$

domain: it's described in the list of "if" statements!!
$x<0$ or $3 \leq x \leq 7$ or $x \geq 12$
The 1st piece, we can use the boundary $\mathrm{x}=0(0,3)$ open circle and, pick a point less than 0 .. $(-3,15)$ and extend the ray...

The 2nd piece, we can use the endpoints $(3,5)$ and $(7,5)$

The 3rd piece, we can use the endpoint $x=12(12,-2)$ closed circle
and, pick a point greater than 12 ..
$(15,-5)$ and extend the ray..
3)

$$
h(\mathrm{t})=\left\{\begin{array}{cc}
2 \mathrm{t}+2 & \text { if } \quad 0<\mathrm{t} \leq 4 \\
\mathrm{t}+6 & \text { if } \quad 4<\mathrm{t} \leq 8 \\
14 & \text { if } \quad \mathrm{t}>8
\end{array}\right.
$$

domain: $t>0$
$(0, \infty)$
range:
$2<h(\mathrm{t}) \leq 14$
$(2,14]$

Again, we have 3 straight pieces...

Endpoints of the 1st piece:
$(0,2)$ open circle
$(4,10)$ closed circle
Endpoints of 2nd piece:
$(4,10)$ open circle
$(8,14)$ closed circle
Endpoint of 3rd piece: $(8,14)$ open circle.. then, horizontal ray extending to the right...

Describe the following piecewise functions. Determine the domain and range.
4)
5)

$$
g(x)=\left\{\begin{array}{ccl}
-3 x-7 & \text { if } & x \leq-4 \\
2 & \text { if } & 0<x \leq 5 \\
-x+20 & \text { if } & x \geq 10
\end{array}\right.
$$

range: since left piece extends indefinitely upward, and right piece extends indefinitely downward, AND they overlap, the range is all real numbers

$$
(-\infty, \infty)
$$

domain: all real numbers
range: $\quad\{-3,2$, and all reals $>6\}$

$$
[-3] \mathrm{U}[2] \mathrm{U}(6, \infty)
$$

)
rer

$$
(-\infty, \infty)
$$

正

$$
f(x)=\left\{\begin{array}{cl}
-3 & \text { if } x \leq-2 \\
2 & \text { if }-2<x \leq 7 \\
x-1 & \text { if } x>7
\end{array}\right.
$$

$$
\text { domain: (the "if" statements) } \mathrm{x} \leq-4 \text { or } 0<\mathrm{x} \leq 5
$$

6)

$$
h(x)=\left\{\begin{array}{ccc}
-x+12 & \text { if } & 0<x \leq 8 \\
4 & \text { if } & 8<x \leq 15 \\
x-11 & \text { if } & x>15
\end{array}\right.
$$

domain: $\mathrm{x}>0$
NOTE: since this is a function, there is no overlap in the "if" statements!!

 recognizing the slopes
and plugging in points
into $y=m x+b$, we
can identify the 1 st
and 3rd pieces... recognizing the slopes
and plugging in points
into $y=m x+b$, we
can identify the 1 st
and 3rd pieces... recognizing the slopes
and plugging in points
into $y=m x+b$, we
can identify the 1 st
and 3rd pieces... recognizing the slopes
and plugging in points
into $y=m x+b$, we
can identify the 1 st
and 3 rd pieces... recognizing the slopes
and plugging in points
into $y=m x+b$, we
can identify the 1 st
and 3rd pieces...
1st piece is a horizontal line " $y=-3$ "
where every output is -3

2nd piece is a horizontal line " $y=2$ " where every output is 2

3 rd piece is ray where the slope is 1 .
" $\mathrm{y}=1 \mathrm{x}+\mathrm{b} "$
To find b, plug in another point... We'll use (10,9). $9=1(10)+b \quad b=-1$

$$
\text { or } x \geq 10
$$

$$
(0, \infty)
$$

range: $\quad h(x) \geq 4$
(the minimum value is 4 , and it extends indefinitely upward)
$[4, \infty)$
7) $f(x)= \begin{cases}x+15 & \text { if } x \leq-5 \\ -|x|+2 & \text { if }-5<x<5 \\ \sqrt{x-5}+3 & \text { if } x \geq 5\end{cases}$

$$
\begin{array}{ll}
\text { domain: } & \text { all real numbers } \\
& (-\infty, \infty)
\end{array}
$$

range: Since the 1st piece extends to negative infinity and the 3 rd piece extends to positive infinity, the range is all real numbers...

$$
(-\infty, \infty)
$$

8)

$$
g(x)=\left\{\begin{array}{llc}
\sqrt{-6-x}+8 & \text { if } & x<-6 \\
(x+3)^{2}+1 & \text { if } & -6 \leq x \leq 1 \\
\frac{1}{2} x+7 & \text { if } & x>4
\end{array}\right.
$$

Piece 1 is a square root function opening to the left... We'll plot easy points..
$(-6,8)(-7,9)(-10,10)$
Piece 2 is a parabola with vertex $(-3,1)$ that opens up... We'll identify the endpoints $(-6,10)$ and $(1,17) \ldots$
domain: domain is the "if statements"...

$$
\begin{gathered}
\mathrm{x} \leq 1 \text { or } \mathrm{x}>4 \\
(-\infty, 1] \cup(4, \infty)
\end{gathered}
$$

Piece 3 is a ray that starts at $(4,9)$ and extends to the right So, we can draw the ray through $(14,14)$
range: The minimum point is the parabola's vertex...

$$
\text { range is } g(x) \geq 1
$$

$$
[1, \infty)
$$

Since piece 1 is linear, we'll use endpoint method... Right boundary is $(-5,10)$.. And, point $(-8,7)$ is a point to the left.

Piece 2 is an absolute value function opening downward. The vertex is $(0,2)$.. And, the endpoints occur at $(-5,-3)$ and $(5,-3) \ldots$ since $<$ and $<$. we use open circles

Piece 3 is a square root function that starts at $(5,3)$ and opens to the right... We'll plot a few points..
$(6,4)(9,5)(14,6)$

9)

$$
h(\mathrm{x})=\left\{\begin{array}{ccc}
\mathrm{x} & \text { if } & \mathrm{x}<1 \\
\frac{1}{2}\left(2^{\mathrm{x}}\right) & \text { if } & 1 \leq \mathrm{x}<4 \\
2|\mathrm{x}-10|-4 & \text { if } & \mathrm{x} \geq 4
\end{array}\right.
$$

domain: all real numbers

$$
(-\infty, \infty)
$$

range: all real numbers

$$
(-\infty, \infty)
$$

The first piece is the line $y=x$ that stops at $\mathrm{x}=1$

The second piece is a exponential growth function... We'll plot the points $\mathrm{x}=1,2,3$, and 4

The third piece is an absolute value function (that opens up). The vertex is $(10,-4)$.
Then, we can find the piece boundary: $x=4$
$(4,8)$
$(10,-4)$

$(15,6)$
VI. Piecewise Models (Word Problems) and Concepts

1) A discount book store charges $\$ 4$ per book..

If a customer buys more than 5 , the price drops to $\$ 3.50$ per book...
Write a piecewise function to model the cost of books. How much would 20 books cost?
$c(b)= \begin{cases}4 b \text { if } b \leq 5 & \begin{array}{l}\text { where } b \text { is number of books } \\ \text { and } \\ 3.5 b \text { if } b>5\end{array} \\ c(b) \text { is cost of books }\end{cases}$
$c(20)=70$ dollars
2) A store sells t-shirts...

It charges $\$ 10$ per shirt for the first batch of $50 .$.
Since the store has the screen design,
the next batch of 50 would cost $\$ 9$ per shirt...
And, all batches after that would cost $\$ 8$ per shirt....
Write a piecewise function describing the cost of shirts...
How much would 120 shirts cost?

$$
f(x)=\left\{\begin{array}{cl}
10 x & \text { if } x \leq 50 \\
9 x+50 & \text { if } 50<x \leq 100 \\
8 x+100+50 & \text { if } x>100
\end{array}\right.
$$

$$
f(120)=1110
$$

3) A shop down the street sells hats...

It charges $\$ 10$ per hat.
If a customer purchases more than 30 hats, the owner offers a $\$ 1$ discount per hat. ($\$ 9$ per hat)
If a customer buys more than 50 hats, the owner offers another $\$ 1$ discount (\$8 per hat).

Write a piecewise function to describe the cost of hats.
The math club has a budget of $\$ 300$. How many hats could it buy?
4) Write and graph a piecewise function with the following characteristics.

Domain: all real numbers
Range: $\{-4,2,5\}$
$f(3)=2$ and $f(-3)=5$

$$
f(x)=\left\{\begin{aligned}
& 5 \text { if } \\
& 2 \text { if } \quad 0<x \leq 6 \\
&-4 \text { if } \\
& x>6
\end{aligned}\right.
$$

?

SOLUTIONS

$f(x)=\{$

this represents the 1 st 50 shirts which were not discounted

$$
c(h)=\left\{\begin{aligned}
10 h & \text { if } h \leq 30 \\
9 h & \text { if } 30<x \leq 50 \\
8 h & \text { if } x>50
\end{aligned}\right.
$$

If the math club buys 30 hats, it would cost $30 \times \$ 10$... HOWEVER, if it bought a few more hats, the cost drops to $\$ 9$!!

33 hats would cost \$297... (34 hats would cost \$306)

5) Match the events with the piecewise function

| | | Snow |
| :--- | :--- | :--- | :--- |
| a) The snow falls for an hour. | 1 | Accumulation |
| b) The snow stops.. | 2 | |
| c) A blizzard arrives.. | 4 | |

6) Betty and Diane are writing wedding invitations.

Betty starts at 8:00 AM and Diane starts at 10:00 AM.
Betty can write 20 invitations per hour.
And, Diane can write 25 invitations per hour.
a) How many invitations will be written by $2: 00$ PM?
b) When will they finish 355 invitations?
c) If they write all day, when will Betty and Diane have the same number?

$$
\begin{aligned}
20 \mathrm{t} & =25(\mathrm{t}-2) \\
20 \mathrm{t} & =25 \mathrm{t}-50 \\
\mathrm{t} & =10
\end{aligned}
$$

"distance $=$ rate x time"

$$
\begin{array}{lll}
\text { Betty: } y=20 t & t=6 \text { hours } & y=120 \text { invitations } \\
\text { Diane: } y=25(t-2) & & y=100 \text { invitations }
\end{array}
$$

220 invitations by 2:00 PM

$$
20 t+25(\mathrm{t}-2)=355
$$

$$
\begin{aligned}
45 \mathrm{t} & =405 \\
\mathrm{t} & =9 \quad \square
\end{aligned}
$$

invitations

7) You and a friend can each make 1 sandwich every 2 minutes.

At lunchtime, you start making sandwiches for the camp. Ten minutes later, your friend shows up and helps you.

Write and graph a (piecewise) model of sandwiches made as a function of time.

> Let $\mathrm{S}=\#$ of sandwiches
> $\mathrm{T}=$ Time (in minutes)
> $\mathrm{S}= \begin{cases}\frac{1}{2} \mathrm{~T} & \text { if } \mathrm{T} \leq 10 \\ \mathrm{~T}+10 & \text { if } \mathrm{T}>10\end{cases}$
Sandwiches

Thanks for visiting. (Hope it helped!)
If you have questions, suggestions, or requests, let us know.
Cheers

Find us at Mathplane.com
Also, TES, and TeachersPayTeachers
Plus, Mathplane Express for mobile at mathplane.ORG

One more question:

$$
\begin{aligned}
& \text { If } c(x)=3 x^{3}+5 x^{2}+4 \\
& \text { what is } 4 c(2 b) ?
\end{aligned}
$$

$$
\text { If } c(x)=3 x^{3}+5 x^{2}+4
$$

SOLUTION

 what is $4 c(2 b)$?reminder: $c(1)=3(1)^{3}+5(1)^{2}+4=12$

$$
\text { FIRST, } \begin{aligned}
& c(2 b)=3(2 b)^{3}+5(2 b)^{2}+4 \\
&=3\left(8 b^{3}\right)+5\left(4 b^{2}\right)+4 \\
&=24 b^{3}+20 b^{2}+4 \\
& \text { THEN }, 4 \cdot c(2 b)=4 \cdot\left(24 b^{3}+20 b^{2}+4\right) \\
&=96 b^{3}+80 b^{2}+16
\end{aligned}
$$

[^0]: (Note: this is just a model. It's unlikely a car would instantaneously change speeds. Instead the graph would be continuous.)

