

CONTENTS

Introduction 2
Translation 3
Scalar Multiplication, Transformation 4
Reflection over x -axis, y -axis, and origin 5
Rotation. 7
Worksheets 8
Solutions 11
Extras 16

INTRODUCTION

An important application of matrices is in coordinate geometry. This packet introduces topics such as mapping, translation, and transformation. It is comprised of notes and examples, followed by practice exercises (and solutions).

Some terms may vary - such as 'enlargement' instead of 'dilation'. But, the overall concepts are utilized in math classes. Also, while this packet emphasizes $2 \times 2,3 \times 2$, and 4×2 linear matrices, most of the methods can be applied to matrices of greater dimensions.

Thanks for checking out this packet. (Hope it helps!)
Questions, suggestions, and feedback are appreciated.
Cheers,
Lance

Matrix Coordinate Geometry

Translate triangle ABC with vertices $\mathrm{A}(-2,4) \quad \mathrm{B}(3,0) \quad \mathrm{C}(5,1)$
where $(\mathrm{x}, \mathrm{y}) \longrightarrow(\mathrm{x}+3, \mathrm{y}-1)$
This represents a horizontal shift 3 units to the right and a vertical shift 1 unit down.

The output is $\mathrm{A}^{\prime}=(-2+3,4-1)=(1,3)$

$$
\begin{aligned}
& \mathrm{B}^{\prime}=(3+3,0-1)=(6,-1) \\
& \mathrm{C}^{\prime}=(5+3,1-1)=(8,0)
\end{aligned}
$$

This may be expressed as a 1×2 matrix
(1 row/2 columns)
x y $\quad\left[\begin{array}{ll}-2 & 4\end{array}\right]+\left[\begin{array}{ll}3 & -1\end{array}\right]=\left[\begin{array}{ll}1 & 3\end{array}\right]$

1st column is x values 2nd column is y values
$\left[\begin{array}{ll}5 & 1\end{array}\right]+\left[\begin{array}{ll}3 & -1\end{array}\right]=\left[\begin{array}{ll}8 & 0\end{array}\right]$

Or, it may be expressed as a 2×1 matrix
(2 rows/ 1 column)

$$
\begin{array}{ll}
\mathrm{x} \\
\mathrm{y}
\end{array} \quad\left[\begin{array}{r}
-2 \\
4
\end{array}\right]+\left[\begin{array}{r}
3 \\
-1
\end{array}\right]=\left[\begin{array}{l}
1 \\
3
\end{array}\right] \quad \text { 1st row is } x \text { values }
$$

These individual matrices can be combined and expressed as one matrix.
Then, the translation matrix can be expanded to match the dimensions of the coordinate matrix.

Translate the square ABCD by shifting it 4 units to the left and 3 units up. The vertices are the following: $\mathrm{A}(3,2) \quad \mathrm{B}(3,4) \quad \mathrm{C}(5,4) \quad \mathrm{D}(5,2)$

$$
\left.\begin{array}{c}
\mathrm{A} B \\
\mathrm{x} \\
\mathrm{y}
\end{array} \begin{array}{ccc}
{\left[\begin{array}{cccc}
3 & 3 & 5 & 5 \\
2 & 4 & 4 & 2
\end{array}\right]+\left[\begin{array}{rrrr}
-4 & -4 & -4 & -4 \\
3 & 3 & 3 & 3
\end{array}\right]=} \\
2 \times 4 \text { matrix } & 2 \times 4 \text { matrix }
\end{array} \begin{array}{cccc}
\mathrm{A}^{\prime} & \mathrm{B}^{\prime} & \mathrm{C}^{\prime} & \mathrm{D}^{\prime} \\
-1 & -1 & 1 & 1 \\
5 & 7 & 7 & 5
\end{array}\right]
$$

the entire matrix represents the vertices

$$
\mathrm{A}^{\prime}(-1,5) \quad \mathrm{B}^{\prime}(-1,7) \quad \mathrm{C}^{\prime}(1,7) \quad \mathrm{D}^{\prime}(1,5)
$$

Matrix Coordinate Geometry

Scalar Multiplication will enlarge (or shrink) the mapped figure by a constant ratio.

Right Triangle $\mathrm{ABC} \quad \mathrm{A}(1,1) \quad \mathrm{B}(1,4) \quad \mathrm{C}(5,1)$
is expressed in the 2×3 matrix
$\left[\begin{array}{lll}1 & 1 & 5 \\ 1 & 4 & 1\end{array}\right]$
$2\left[\begin{array}{lll}1 & 1 & 5 \\ 1 & 4 & 1\end{array}\right]=\left[\begin{array}{ccc}2 & 2 & 10 \\ 2 & 8 & 2\end{array}\right]$
The triangle dimensions are doubled.
(Perimeter is 2 x and area is $2^{2} \mathrm{x}$ (or 4 x))

Triangle DEF with vertices

$$
\begin{aligned}
& \mathrm{D}(-3,6)
\end{aligned} \mathrm{E}(3,0) \quad \mathrm{F}(6,9) \quad\left[\begin{array}{rrr}
-3 & 3 & 6 \\
6 & 0 & 9
\end{array}\right]
$$

This triangle's dimensions are shrunk to $1 / 3$ the original size.

Observations:

1) If a vertex is on the origin, then the figure will remain on the origin
For any scalar $K, K\left[\begin{array}{l}0 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$

2) For scalar K :
if $\mathrm{K}>1$, then the figure grows
if $0<\mathrm{K}<1$, then the figure shrinks
if $\mathrm{K}=1$, the figure remains the same
if $\quad \mathrm{K}=0$, the image is transformed into a point on the origin!
$0\left[\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{4} \\ y_{1} & y_{2} & y_{3} & y_{4}\end{array}\right]=\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
3) If the scalar is negative, then the image is magnified and reflected over the origin.

$$
-2\left[\begin{array}{llll}
0 & 1 & 3 & 3 \\
1 & 3 & 3 & 1
\end{array}\right]=\left[\begin{array}{llll}
0 & -2 & -6 & -6 \\
-2 & -6 & -6 & -2
\end{array}\right]
$$

Matrix Coordinate Geometry

To discover the reflection matrices, consider the identy matrix I:
$I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
For any matrix $\mathrm{M}, \mathrm{I} \cdot \mathrm{M}=\mathrm{M}$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right]=\left[\begin{array}{ll}
1 \mathrm{a}+0 \mathrm{c} & 1 \mathrm{~b}+0 \mathrm{~d} \\
0 \mathrm{a}+1 \mathrm{c} & 0 \mathrm{~b}+1 \mathrm{~d}
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right]} \\
& {\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ccc}
& 3 & -4 \\
5 & \mathrm{y} & 0 \\
10
\end{array}\right]=\left[\begin{array}{cccc}
1 & 3 & -4 & \mathrm{x} \\
5 & \mathrm{y} & 0 & 10
\end{array}\right]}
\end{aligned}
$$

Now, suppose you want to reflect the coordinates (represented by the matrix) over the y-axis...
You need to change all the x terms into -x (without changing the y terms!)
If you multipy by a scalar, the x and y terms will change...
Instead, adjust the Identity matrix..

$$
R_{y}=\text { Reflection matrix over the } y \text {-axis: }\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right]
$$

(this changes all the terms in the 1st row; and, the 2nd row remains the same)

$$
R_{x}=\text { Reflection matrix over the } x \text {-axis: }\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]
$$

Note:

1) the dimensions must be acceptable. \# of columns in $\mathrm{R}=$ \# of rows in M
2) Reflection matrix is to the left of the coordinate matrix
(this changes all the terms in the 2 nd row; but, the 1 st row remains the same)

Reflect the triangle with vertices $A B C$ over the y-axis:

$$
\left.\begin{array}{c}
{\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{lll}
2 & 4 & 0 \\
1 & 4 & 3
\end{array}\right]=} \\
\mathrm{R}_{\mathrm{y}} \\
\mathrm{M}
\end{array} \begin{array}{ccc}
-2 & -4 & 0 \\
1 & 4 & 3
\end{array}\right]
$$

$$
\mathrm{R}_{\mathrm{o}}=\text { Reflection over the origin: }\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

Note: Since all terms are opposites when reflected over the origin, multiplying the coordinate matrix by -1 (scalar) will determine the matrix reflected over the origin.

Matrix Coordinate Geometry

Deriving the reflection matrix (over the y-axis):
Suppose we have a coordinate matrix A, where row 1 is the x-values row 2 is the y-values $\quad\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$

If we reflect the coordinates over the y -axis, the result would be matrix B

$$
\left[\begin{array}{rr}
-\mathrm{a} & -\mathrm{b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right]
$$

What matrix X would reflect $\mathrm{A} \rightarrow \mathrm{B}$?

We know $X A=B$ where X is the reflection matrix over the y-axis.
Therefore, if we find X , we would discover the reflection matrix!

$$
\begin{aligned}
& \text { X A } \\
& \text { B } \\
& I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& X A=B \\
& \mathrm{XAA}^{-1}=\mathrm{BA}^{-1} \\
& \mathrm{XI}=\mathrm{BA}^{-1} \\
& X=B A^{-1} \\
& {\left[\begin{array}{l}
\mathrm{X}
\end{array}\right]=\left[\begin{array}{rr}
-\mathrm{a} & -\mathrm{b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right]\left[\begin{array}{cc}
\frac{\mathrm{d}}{\mathrm{ad}-\mathrm{bc}} & \frac{-\mathrm{b}}{\mathrm{ad}-\mathrm{bc}} \\
\frac{-\mathrm{c}}{\mathrm{ad}-\mathrm{bc}} & \frac{a}{\mathrm{ad}-\mathrm{bc}}
\end{array}\right]=\left[\begin{array}{cc}
\frac{-a d+b c}{a d-b c} & \frac{a b-b a}{\mathrm{ad}-\mathrm{bc}} \\
\frac{\mathrm{~cd}-\mathrm{dc}}{\mathrm{ad}-\mathrm{bc}} & \frac{-\mathrm{bc}+\mathrm{da}}{\mathrm{ad}-\mathrm{bc}}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]} \\
& A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]=\left[\begin{array}{cc}
\frac{d}{a d-b c} & \frac{-b}{a d-b c} \\
\frac{-c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right] \\
& A^{-1}
\end{aligned}
$$

Using this method of algebra, matrices, and inverses, we can determine a rotation matrix.

Find the rotation matrix -- clock wise 90° about the origin
Notice that $(2,3)$ translates into $(3,-2)$ when it is rotated 90 degrees clockwise.

In fact, any (x, y) will turn into ($y,-x$)
Expressed as a coordinate matrix:
$(2,3) \rightarrow(3,-2)$
$(\mathrm{a}, \mathrm{c}) \longrightarrow(\mathrm{c},-\mathrm{a})$

$$
\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right] \rightarrow\left[\begin{array}{cc}
\mathrm{c} & \mathrm{~d} \\
-\mathrm{a} & -\mathrm{b}
\end{array}\right]
$$

$(\mathrm{b}, \mathrm{d}) \longrightarrow(\mathrm{d},-\mathrm{b})$

Finding a rotation matrix:

Set up the matrix equations,
find the inverse, and solve:

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]=\left[\begin{array}{cc}
\frac{d}{a d-b c} & \frac{-b}{a d-b c} \\
\frac{-c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right] \quad I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Test the result:
Rotate Quadrilateral ABCD clockwise 90 degrees (around the origin)
$\mathrm{A}(0,4)$
$\mathrm{B}(2,6)$$\quad\left[\begin{array}{cccc}\mathrm{A} & \mathrm{B} & \mathrm{C} & \mathrm{D} \\ 0 & 2 & 5 & 3 \\ 4 & 6 & 3 & -2\end{array}\right] \mathrm{x}$
C $(5,3)$
$\mathrm{D}(3,-2)$

$$
\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{llll}
0 & 2 & 5 & 3 \\
4 & 6 & 3 & -2
\end{array}\right]=\left[\begin{array}{rrrr}
4 & 6 & 3 & -2 \\
0 & -2 & -5 & -3
\end{array}\right]
$$

Rotation

Matrix

Matrix Coordinate Geometry Worksheet

I. Mapping

A) Write a 2×4 coordinate matrix representing the polygon ABCD in the xy -plane.
B) In the $x y$-plane (on the right), graph the triangle whose vertices E, F, and G are expressed by the following (linear) matrix:

$$
\left[\begin{array}{lll}
4 & 6 & 5 \\
1 & 1 & 5
\end{array}\right]
$$

What type of triangle does the matrix describe?

II. Translation
A) What (movement on a Cartesian Plane) does matrix T represent?

$$
\mathrm{AX}+\mathrm{T}=\mathrm{A}^{\prime}
$$

$\left[\begin{array}{lll}a & b & c \\ d & e & f\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]+\left[\begin{array}{ccc}3 & 3 & 3 \\ -4 & -4 & -4\end{array}\right]=\left[\begin{array}{lll}a^{\prime} & b^{\prime} & c^{\prime} \\ d^{\prime} & e^{\prime} & f^{\prime}\end{array}\right]$
A X
T
A'
B) Use a 2×4 coordinate matrix to describe each translation in the graph.
$\mathrm{A}+\mathrm{T}=\mathrm{A}^{\prime}$
$\mathrm{T}=[\quad]$
$\mathrm{A}+\mathrm{T}^{\prime \prime}=\mathrm{A}^{\prime \prime}$

$$
\mathrm{T}^{\prime \prime}=\left[\begin{array}{ll}
& \\
\end{array}\right.
$$

Matrix Coordinate Geometry Worksheet

III. Scalar Transformation

A) Write the 2×4 matrix, listing the four vertices of the shape in the graph.

$$
\mathrm{S}=[\mathrm{l}]
$$

B) What is the matrix 2 S ?

Map 2S on the graph (on the right).

C) What is the scalar used to transform

1) $\mathrm{M} \longrightarrow \mathrm{M}^{\prime}$?
2) $\mathrm{M} \longrightarrow \mathrm{M}^{\prime \prime}$?

IV. Reflection

Identify (describe) the linear transformation each matrix performs:
1)
$\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
2)
$\left[\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
3)
$\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
4)
$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y}\end{array}\right]$

V. Identifying transformation matrices

For each graph, write the original coordinate matrix M, the transformed matrix M^{\prime}, and the transformation matrix T .
1)

$$
\mathrm{M}=[\mathrm{M}]
$$

$$
\mathrm{T}=[\mathrm{l}
$$

2)

$$
\mathrm{M}=[\quad]
$$

$$
\mathrm{T}=[\mathrm{l}
$$

3)

$$
\begin{gathered}
\mathrm{M}=\left[\quad \mathrm{M}^{\prime}=[\right. \\
\mathrm{T}=[\square
\end{gathered}
$$

Matrix Coordinate Geometry Worksheet

I. Mapping

A) Write a 2×4 coordinate matrix representing the polygon ABCD in the xy -plane.

$$
\left[\begin{array}{cccc}
2 & 3 & 1 & -2 \\
6 & 0 & -3 & 1
\end{array}\right] \quad \begin{aligned}
& \mathrm{A}(2,6) \\
& \mathrm{B}(3,0) \\
& \mathrm{C}(1,-3) \\
& \mathrm{D}(-2,1)
\end{aligned}
$$

B) In the $x y$-plane (on the right), graph the triangle whose vertices E, F, and G are expressed by the following (linear) matrix:

> (see graph)

$$
\left[\begin{array}{lll}
4 & 6 & 5 \\
1 & 1 & 5
\end{array}\right] \quad \begin{aligned}
& \mathrm{E}(4,1) \\
& \mathrm{F}(6,1) \\
& \mathrm{G}(5,5)
\end{aligned}
$$

What type of triangle does the matrix describe?

Isosceles triangle

II. Translation
A) What (movement on a Cartesian Plane) does matrix T represent?

$$
\mathrm{AX}+\mathrm{T}=\mathrm{A}^{\prime}
$$

$\left[\begin{array}{lll}\mathrm{a} & \mathrm{b} & \mathrm{c} \\ \mathrm{d} & \mathrm{e} & \mathrm{f}\end{array}\right]\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y}\end{array}\right]+\left[\begin{array}{ccc}3 & 3 & 3 \\ -4 & -4 & -4\end{array}\right]=\left[\begin{array}{lll}\mathrm{a}^{\prime} & \mathrm{b}^{\prime} & \mathrm{c}^{\prime} \\ \mathrm{d}^{\prime} & \mathrm{e}^{\prime} & \mathrm{f}^{\prime}\end{array}\right] \quad$ The figure shifts to the right 3 units and
A X
T
A'
B) Use a 2×4 coordinate matrix to describe each translation in the graph.
$A+T=A^{\prime} \quad$ horizontal shift: 1 unit to the right vertical shift: 4 units up
$\mathrm{T}=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 4 & 4 & 4 & 4\end{array}\right]$
$\mathrm{A}+\mathrm{T}^{\prime \prime}=\mathrm{A}^{\prime \prime}$

$$
\mathrm{T}^{\prime \prime}=\left[\begin{array}{cccc}
-6 & -6 & -6 & -6 \\
0 & 0 & 0 & 0
\end{array}\right] \begin{aligned}
& \text { horizontal shift: } 6 \text { units } \\
& \text { to the left } \\
& \text { (no vertical shift along }
\end{aligned}
$$ the y-axis)

Matrix Coordinate Geometry Worksheet

III. Scalar Transformation

A) Write the 2×4 matrix, listing the four vertices of the shape in the graph.

$$
\mathbf{S}=\left[\begin{array}{rrrr}
-1 & 3 & 4 & 0 \\
2 & 4 & -1 & 0
\end{array}\right]
$$

A(-1, 2)
B $(3,4)$
C $(4,-1)$
$\mathrm{D}(0,0)$
B) What is the matrix 2 S ?

Map 2S on the graph (on the right).
$2 \mathbf{S}=2\left[\begin{array}{rrrr}-1 & 3 & 4 & 0 \\ 2 & 4 & -1 & 0\end{array}\right]=\left[\begin{array}{rrrr}-2 & 6 & 8 & 0 \\ 4 & 8 & -2 & 0\end{array}\right]$

C) What is the scalar used to transform

1) $\mathrm{M} \longrightarrow \mathrm{M}^{\prime}$?
$-1 / 2\left[\begin{array}{llll}2 & 2 & 6 & 6 \\ 2 & 6 & 2 & 6\end{array}\right]=\left[\begin{array}{llll}-1 & -1 & -3 & -3 \\ -1 & -3 & -1 & -3\end{array}\right]$
2) $\mathrm{M} \longrightarrow \mathrm{M}^{\prime \prime}$?

0
because $0\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$

IV. Reflection

Identify (describe) the linear transformation each matrix performs:
1)
$\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
$(\mathrm{x}, \mathrm{y}) \longrightarrow(\mathrm{x},-\mathrm{y})$
reflection over the x -axis
2)
$\left[\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
$(\mathrm{x}, \mathrm{y}) \longrightarrow(-\mathrm{x}, \mathrm{y})$
reflection over the y-axis
3)
$\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
$(\mathrm{x}, \mathrm{y}) \longrightarrow(-\mathrm{x},-\mathrm{y})$
reflection over
the origin
(or 180° rotation)
4)
$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y}\end{array}\right]$
$(\mathrm{x}, \mathrm{y}) \longrightarrow(\mathrm{x}, \mathrm{y})$
NO transformation (identity matrix)
V. Identifying transformation matrices

For each graph, write the original coordinate matrix M, the transformed matrix M^{\prime}, and the transformation matrix T .

$$
\begin{aligned}
& \text { 1) } \\
& \mathrm{M}=\left[\begin{array}{lll}
3 & 5 & 2 \\
3 & 2 & 0
\end{array}\right] \\
& \mathrm{M}^{\prime}=\left[\begin{array}{ccc}
6 & 10 & 4 \\
6 & 4 & 0
\end{array}\right] \\
& \text { A(3, 3) } \\
& \text { B(5, 2) } \\
& \text { C }(2,0) \\
& \mathrm{A}^{\prime}(6,6) \\
& \text { B' }(10,4) \\
& {\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right]\left[\begin{array}{lll}
3 & 5 & 2 \\
3 & 2 & 0
\end{array}\right]=\left[\begin{array}{ccc}
6 & 10 & 4 \\
6 & 4 & 0
\end{array}\right]} \\
& \mathrm{C}^{\prime}(4,0) \\
& \text { note: this is the } \\
& \text { same as scalar } \\
& \text { multiplication } \times 2 \\
& \mathrm{~T}=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right] \\
& 3 a+3 b=6 \\
& 5 \mathrm{a}+2 \mathrm{~b}=10 \quad \mathrm{a}=2 \\
& 2 \mathrm{a}+0 \mathrm{~b}=4 \quad \mathrm{~b}=0 \\
& \begin{aligned}
3 c+3 d & =6 \\
5 c+2 d & =4
\end{aligned} \quad c=0 \\
& 2 \mathrm{c}+0 \mathrm{~d}=0 \quad \mathrm{~d}=2
\end{aligned}
$$

SOLUTIONS

**Challenge Question:

The endpoints of a diagonal of a square drawn in the xy coordinate plane are expressed as $(0,0)$ and $(-2,0)$.

When this square is transformed by a 2×2 matrix, the resulting quadrilateral has coordinates $(0,0),(5,1),(6,4)$, and $(1,3)$.

Find the transformation matrix.

Solution on the next page...

The endpoints of a diagonal of a square drawn in the x, y coordinate plane are expressed as $(-2,0)$ and $(0,0)$. When this square is transformed by a particular 2×2 transformation matrix T, the resulting quadrilateral has coordinates $(0,0)(5,1)(6,4)(1,3)$. Find the transformation matrix.

Step 1: Sketch the figures (and, identify coordinates)

1) diagonals of a square are equal and perpendicular; therefore, the other endpoints are $(-1,1)$ and $(-1,-1)$
length of each diagonal is 2 ; they bisect each other at $(-1,0)$
2) it appears that the square is "reflected" and "stretched" therefore,

$$
\begin{aligned}
(0,0) & \longrightarrow(0,0) \\
\mathrm{B}(-1,-1) & \longrightarrow(5,1) \\
\mathrm{A}(-2,0) & \longrightarrow(6,4) \\
(-1,1) & \longrightarrow(1,3)
\end{aligned}
$$

Step 2: Express coordinates in matrix form

$$
\mathrm{S}=\left[\begin{array}{ccc}
\mathrm{B} & \mathrm{~A} & -1 \\
0 & -1 & -2 \\
0 & -1 & 0 \\
\hline
\end{array}\right] \mathrm{x} \quad \mathrm{~S}^{\prime}=\left[\begin{array}{cccc}
\mathrm{B}^{\prime} & \mathrm{A}^{\prime} \\
0 & 5 & 6 & 1 \\
0 & 1 & 4 & 3
\end{array}\right] \quad \mathrm{T}=\left[\begin{array}{cc}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right] \quad \text { transformation matrix }
$$

Step 3: Solve
$\mathrm{TS}=\mathrm{S}^{\prime}$

$$
\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right]\left[\begin{array}{cccc}
0 & -1 & -2 & -1 \\
0 & -1 & 0 & 1
\end{array}\right]=\left[\begin{array}{llll}
0 & 5 & 6 & 1 \\
0 & 1 & 4 & 3
\end{array}\right]
$$

TxS (matrix multiplication)

$$
\begin{array}{lll}
\text { row 1/col 1: } 0 & =0 & \\
\text { row 1/col 2: }-\mathrm{a}-\mathrm{b} & =5 & \mathrm{a}=-3 \\
\text { row } 1 / \mathrm{col} 3:-2 \mathrm{a}+0 & =6 & \mathrm{~b}=-2 \\
\text { row } 1 / \mathrm{col} 4:-\mathrm{a}+\mathrm{b} & =1 & \\
& & \\
\text { row } 2 / \mathrm{col} \mathrm{1:}: 0 & =0 & \mathrm{c}=-2 \\
\text { row } 2 / \mathrm{col} \mathrm{2:}-\mathrm{c}-\mathrm{d} & =1 & \mathrm{~d}=1 \\
\text { row } 2 / \mathrm{col} \mathrm{3:}-2 \mathrm{c}+0 & =4 & \\
\text { row } 2 / \mathrm{col} 4:-\mathrm{c}+\mathrm{d} & =3 &
\end{array}
$$

(substitution and solve algebraically)

Step 4: Check solution

$$
\mathrm{T}=\left[\begin{array}{cc}
-3 & -2 \\
-2 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{cc}
-3 & -2 \\
-2 & 1
\end{array}\right]\left[\begin{array}{cccc}
0 & -1 & -2 & -1 \\
0 & -1 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
0+0 & 3+2 & 6+0 & 3+(-2) \\
0+0 & 2+(-1) & 4+0 & 2+1
\end{array}\right]=\left[\begin{array}{llll}
0 & 5 & 6 & 1 \\
0 & 1 & 4 & 3
\end{array}\right]
$$

What is the area?

 $2(7)+5(3)+8(-1)+5(3)=36$

$$
\frac{1}{2}|36-84|=24
$$

$$
\begin{aligned}
& 5(3)+8(7)+5(3)+2(-1)=84
\end{aligned}
$$

area of rhombus is ($1 / 2$)(diagonal 1)(diagonal 2)

$$
(1 / 2)(6)(8)=24
$$

The area of 1 triangle $=(1 / 2)($ base $)($ height $)=(1 / 2)(3)(4)=6$ So, area of entire rhombus is 24

$$
y=2 x^{2}+3 x+1
$$

Method 1: translate 3 points

Pick 3 points on the curve:
$(2,15)$

Translate/dilate the 3 points:
$(0,2)$
$(4,30)$
$(-6,20)$

Determine the equation of the curve going through the 3 points!
$y=a x^{2}+b x+c$
at $(0,2): \quad 2=0 \mathrm{a}+0 \mathrm{~b}+\mathrm{c}$
at $(4,30): 30=16 \mathrm{a}+4 \mathrm{~b}+\mathrm{c}$
at $(-6,20): 20=36 a+-6 b+c$
solve the system....
$\mathrm{a}=1 \quad \mathrm{~b}=3 \quad \mathrm{c}=2$
$y=x^{2}+3 x+2$

Method 2: Using matrix transformations

$$
\text { so, } y^{\prime}=4\left(\frac{x^{\prime}}{2}\right)^{2}+6\left(\frac{x^{\prime}}{2}\right)+2
$$

$$
y^{\prime}=x^{\prime}+3 x^{\prime}+2
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \text { and, since } y=2 x^{2}+3 x+1 \quad\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
2 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{c}
x \\
2 x^{2}+3 x+1
\end{array}\right]} \\
& {\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{c}
2 x \\
4 x^{2}+6 x+2
\end{array}\right]} \\
& y^{\prime}=4 x^{2}+6 x+2 \quad \text { and } x^{\prime}=2 x \quad \rightarrow \text { then, } x=x^{\prime} / 2
\end{aligned}
$$

