## Logarithm and Exponents 2:

## Solving equations


(Answer in the back)

Topics include change of base, inverses, inequalities, factoring, intercepts, graphing, and more

| Example: $\log _{4}(\mathrm{x}-1)=-1+\log _{4}(\mathrm{x})$ $\begin{aligned} \log _{4}(x-1)-\log _{4}(x) & =-1 \\ \log _{4} \frac{(x-1)}{x} & =-1 \\ 4^{-1} & =\frac{(x-1)}{x} \\ \frac{1}{4} & =\frac{(x-1)}{x} \\ 4 x-4 & =x \\ x & =\frac{4}{3} \end{aligned}$ <br> (Logarithm Quotient Rule) <br> (Change to Exponential Form) <br> (Cross Multiply) | Example: $\log _{\sqrt{\mathrm{a}}}(5)=\log _{\mathrm{a}} \mathrm{x} \quad$ find x : $\begin{aligned} & \frac{\log 5}{\log \left(a^{2}\right)}=\frac{\log x}{\log a} \\ & \frac{\log 5}{\frac{1}{2} \log a}=\frac{\log x}{\log a} \\ & \log 5=\frac{1}{2} \log x \\ & \log 5=\log 5 \cdot \log a=\log x \cdot \log \sqrt{a} \\ & \frac{\log 5}{\log x}=\frac{\log \sqrt{a}}{\log a} \\ & x=25 \end{aligned} \log _{x} 5=\log _{a} \sqrt{a} \log _{x} 5=\frac{1}{2} .$ |
| :---: | :---: |
| Example: $\log (\sqrt[3]{x})=\sqrt{\log (x)}$ $\begin{gathered} \log x^{\frac{1}{3}}=\sqrt{\log (x)} \\ \frac{1}{3} \log (x)=\sqrt{\log (x)} \\ \frac{1}{3} \log (x) \cdot \frac{1}{3} \log (x)=\log (x) \\ \frac{1}{9}(\log (x))^{2}-\log (x)=0 \\ \log (x) \cdot\left(\frac{1}{9} \log (x)-1\right)=0 \\ \log (x)=0 \quad \frac{1}{9} \log (x)-1=0 \\ x=10^{0} \quad \frac{1}{9} \log (x)=1 \\ x=1 \\ \log (x)=9 \\ x=10^{9} \end{gathered}$ <br> (Logarithm Power Rule) <br> (Square both sides) | $\text { Example: } \begin{aligned} e^{3 \mathrm{x}} & =\left(\frac{7}{e}\right)^{\mathrm{x}+1} \\ e^{3 \mathrm{x}} & =\left(7 \cdot e^{-1}\right)^{\mathrm{x}+1} \\ e^{3 \mathrm{x}} & =7^{(\mathrm{x}+1)} \cdot e^{(-\mathrm{x}-1)} \\ \frac{e^{3 \mathrm{x}}}{e^{(-\mathrm{x}-1)}} & =7^{(\mathrm{x}+1)} \\ e^{4 \mathrm{x}+1} & =7^{(\mathrm{x}+1)} \end{aligned}$ $\begin{aligned} \ln e^{4 \mathrm{x}+1} & =\ln 7(\mathrm{x}+1) \\ (4 \mathrm{x}+1) \ln e & =(\mathrm{x}+1) \ln 7 \\ 4 \mathrm{x}+1 & =1.946 \mathrm{x}+1.946 \\ 2.054 \mathrm{x} & =.946 \end{aligned}$ <br> Check: <br> $x=.461$ <br> approximately $\begin{aligned} e^{(3 \cdot .461)} & =\left(\frac{7}{e}\right)^{(.461+1)} \\ e^{1.383} & =\left(\frac{7}{e}\right)^{1.461} \\ 3.987 & =3.983 \quad \text { (approx.) } \end{aligned}$ |
| Example: $\log _{7}(\mathrm{x}+5)=\log _{7}(\mathrm{x}-1)-\log _{7}(\mathrm{x}+1)$ $\begin{aligned} \log _{7}(x+5) & =\log _{7}\left(\frac{x-1}{x+1}\right) \quad \text { (Logarithm Quotient Rule) } \\ \frac{(x+5)}{1} & =\left(\frac{x-1}{x+1}\right) \quad \text { (Drop the logarithms) } \\ (x+5)(x+1) & =x-1 \\ x^{2}+5 x+6 & =0 \\ (x+2)(x+3) & =0 \quad x=-2 \text { or }-3 \end{aligned}$ <br> However, logarithms cannot be negative... Therefore there is NO SOLUTION! | Example: $\log (4 \mathrm{x})-\log (24+\sqrt{\mathrm{x}})=2$ $\begin{gathered} \log _{10} \frac{4 x}{(24+\sqrt{x})}=2 \\ \frac{4 x}{(24+\sqrt{x})}=100 \\ 4 x=2400+100 \sqrt{x} \\ 4 x-100 \sqrt{x}-2400=0 \\ x-25 \sqrt{x}-600=0 \end{gathered}$ $A^{2}-25 A-600=0$ $(\mathrm{A}-40)(\mathrm{A}+15)=0$ $\mathrm{A}=40 \text { or }-15$ <br> therefore, $\begin{aligned} & \sqrt{x}=40 \text { or }-15 \\ & x=1600 \text { or } 225 \end{aligned}$ $\begin{gathered} \log (6400)-\log (64)=2 \\ \log (4(225))-\log (24+\sqrt{225})=2 \\ \log (900)-\log (39)=2 \end{gathered}$ |

## Exponents and Logarithms

Example: Find $3^{\mathrm{X}}=21$
Method 1: Convert to logarithmic form...

$$
3^{x}=21
$$

$\log _{3} 21=\mathrm{x} \quad$ Then, input into a calculator... $\mathrm{x}=2.771244$

Method 2: Use the common log (base 10)

$$
\begin{array}{rlrl}
3^{\mathrm{x}} & =21 & 3^{\mathrm{x}}=21 \\
\log \left(3^{\mathrm{x}}\right) & =\log (21) & \text { "raise" both sides to the common log } & \log _{3} 21=x
\end{array} \quad \text { "Change of Base Formula" }
$$

Method 3: Graphing each side
The intersection of
$y=3^{x}$
and
$y=21$ is the solution...


Method 4: Guess and check

$$
\begin{aligned}
& 3^{x}=21 \quad \text { If } x=2, \text { then } 3^{2}=9 \quad \text { Greater... } \\
& \text { If } x=3 \text {, then } 3^{3}=27 \quad \text { Less } \ldots \\
& \text { If } x=2.8 \text {, then } 3^{2.8}=21.67 \quad \text { Less } \ldots \\
& \text { If } x=2.7 \text {, then } 3^{2.7}=19.4 \quad \text { Greater } \ldots \\
& \text { If } x=2.75 \text {, then } 3^{2.75}=20.52 \quad \text { Greater... }
\end{aligned}
$$

We've determined the answer is between 2.75 and 2.8
If $x=2.77$, then $3^{2.77}=20.97$

Example: $\quad 36=10\left(1+\frac{.08}{4}\right)^{4 \mathrm{x}}$
NOTE: this is a model of a compounding interest function!
"how long will it take 10 to grow to 36 if compounded at $8 \%$ quarterly?"

Rule of 72: $72 / 8=9$
it will take approx. 9 years to double...
10... 20 (9 years)... 40 ( 18 years)
so, the answer should be a bit under 18 years!

Let's see....
$\log 3.6=(4 \mathrm{x}) \log (1.02)$
$.5563025=(4 \mathrm{x})(.00860017)$
$x=16.17$ (approximately)

## Example: Find the inverse of $g(\mathrm{x})=2^{(\mathrm{x}-4)}+6$



Example: Solve algebraically... Then, support your answer graphically.

$$
\log _{3} x+7=4-\log _{5} x
$$

$$
\log _{3} x+\log _{5} x=4-7
$$

$$
\frac{\log x}{\log 3}+\frac{\log x}{\log 5}=-3
$$

$$
\frac{1}{.477} \log x+\frac{1}{.699} \log x=-3
$$

$$
2.10 \log x+1.43 \log x=-3
$$

$(.141,5.22)$

$$
\begin{aligned}
\log x & =-.85 \\
x & =.141
\end{aligned}
$$



## To solve on TI-Nspire CX CAS

"solve $\left(\log _{3} x+\log _{5} x+3=0, x\right) "$
"enter"
solve graphically on calculator
$\begin{aligned} & \text { graph } \log _{3} x+7: \\ & \text { then, } \\ & \text { graph } \quad 4-\log _{5} x \\ & \text { log } 3\end{aligned}+7-\frac{\log x}{\log 5}$.
The intersection is the solution!


Step 1: Find 2 points on the curve...

$$
(1,3) \text { and }(2,4)
$$

Since the inverse of the log function is an exponential function, we can apply...

Step 2: Use the reflected points to find the inverse...

$$
\begin{aligned}
& (3,1) \text { and }(4,2) \\
& y=a b^{x} \quad \text { exponential model } \\
& 1=a b^{3} \quad 2=a b^{4}
\end{aligned}
$$

$$
\text { solve the system: } \begin{array}{rlrl}
\mathrm{a} & =\frac{1}{\mathrm{~b}^{3}} & \begin{array}{l}
\text { substitute into second } \\
\text { equation }
\end{array} \\
2 & =\left(\frac{1}{\mathrm{~b}^{3}}\right) \mathrm{b}^{4} & \\
\mathrm{~b} & =2 & \mathrm{y}=\mathrm{ab} \\
\text { then, } 1 & =\mathrm{a}(2)^{3} & \mathrm{y}=(1 / 8)(2)^{x} \\
\mathrm{a} & =1 / 8 & x
\end{array}
$$



Step 3: Find the inverse (logarithm model)

$$
\begin{array}{ll}
\mathrm{x}=(1 / 8)(2)^{\mathrm{y}} & \text { "switch } \mathrm{x} \text { and } \mathrm{y} " \\
8 \mathrm{x}=2^{\mathrm{y}} & \text { "solve for } \mathrm{y} " \\
\log _{2}(8 \mathrm{x})=\mathrm{y} & \\
\hline
\end{array}
$$

## Example: Find the logarithmic equation for the given graph:

Step 1: Recognize the vertical asymptote

$$
y=\log _{\mathrm{a}}(\mathrm{x}-2)
$$

Step 2: use the point $(3,-3)$ to find the vertical shift

$$
\begin{aligned}
& \mathrm{y}=\log _{\mathrm{a}}(\mathrm{x}-2)+\mathrm{k} \\
& -3=\log _{\mathrm{a}}(3-2)+\mathrm{k} \\
& -3=0+\mathrm{k}
\end{aligned}
$$

$$
\text { vertical shift } \mathrm{k}=-3
$$

$$
\mathrm{y}=\log _{\mathrm{a}}(\mathrm{x}-2)-3
$$

Step 3: use the point $(4,-4)$ to find the base

$$
\begin{aligned}
& -4=-\log _{\mathrm{a}}(4-2)-3 \\
& -1=-\log _{\mathrm{a}}(2) \quad \text { base } \mathrm{a}=2
\end{aligned}
$$

$$
y=-\log _{2}(x-2)-3
$$

Simplify 1) $\ln e^{3}+(\ln e)^{2}-\ln \left(4 e^{2}\right)=$

Solve for $x$
3) $\log (x+3)=\log x+\log 3$
5) $2 \log _{2} x+\log _{2}\left(\frac{1}{x-1}\right)=5$
7) $3 \log _{2} x=-\log _{2} 27$
8) $\quad \log _{3}(-81)=x$
II. Exponentials and Bases

Logarithm 2 Practice Test
Solve for $x$ :

1) $8^{5 x}=16^{3 x+4}$
2) $4^{3-x} \cdot\left(\frac{1}{8}\right)^{2 x+5}=16^{x+3}$
3) $2^{x+1}=3^{x-1}$
4) $2^{\mathrm{x}+3}=3^{2 \mathrm{x}-1}$
5) $4^{3 \mathrm{x}+1}=5^{\mathrm{x}-2}$
6) $2^{2 \log _{5} \mathrm{x}}=\frac{1}{16}$

Solve for $x$ and $y$ :
7) $\quad 4^{x+y}=64$
$2^{2 \mathrm{x}-\mathrm{y}}=128$
8) $5^{2 x+y}=21$
$7^{4 x-y}=25$
III. Using Change of Base

Simplify:

1) $\log _{10} 11 \cdot \log _{11} 12 \cdot \log _{12} 13 \cdot \ldots \cdot \log _{999} 1000=$
2) $\frac{\log _{25}(3)}{\log _{5}(81)}$

Solve for $x$ :
3) $\log _{4} x+\log _{16} x=1$
4) $3^{\mathrm{x}-9}=\frac{\log _{5} 8}{\log _{5} 2}$

Find $y$ :
5) $\left(\log _{3} x\right)\left(\log _{x} 4 x\right)\left(\log _{4 x} y\right)=\log _{x} x^{2}$
6) $\log _{9}\left(\frac{1}{27}\right)=\frac{y}{2}$
IV. Factoring exponentials

Solve for $x$ :

1) $2^{2 x}-2^{x}-6=0$
2) $4^{\mathrm{x}}-2^{\mathrm{x}+1}=3$
3) $3^{2 x+1}-7 \cdot 3^{x}+2=0$
4) $e^{x}-6 e^{-x}=1$
5) $\left(\log _{3} \mathrm{x}\right)^{2}-\log _{3}\left(\mathrm{x}^{2}\right)=3$
V. Exponential and Logarithm inequalities
6) $\ln (x+2)^{2}>3$
7) $6^{\mathrm{n}-1}<11^{\mathrm{n}}$
8) $\ln \left(x^{2}\right) \geq \ln (x+2)$
9) $2 \ln 3-\ln (x+3)>\ln 6$
10) When is $\log _{2}(x-2)>\log _{4}(x)$ ?
VI. Miscellaneous Questions
11) What are the intercepts? ( $x$-intercept and $y$-intercept)

$$
y=\log _{3}(x+9)-3
$$

2) The vertical asymptote is at $x=2$
containing point ( $18,-5$ )
What is the function in the log form

$$
f(x)=\log _{4}(x+A)+B ?
$$

3) $\log _{10} 2=.30$

What is $\log _{3} 4$ ?
$\log _{10} 3=.48$
(no calculator)
4) Rewrite using base 5 :
a) $y=2(25)^{0.4 x}$
b) $y=(4)^{-0.2 x}$
5) Find the inverses:

$$
f(\mathrm{x})=4 e^{(\mathrm{x}+2)}+16
$$

$$
h(x)=3-\log (2+x)
$$

6) Word Problems
A) You deposit $\$ 10,000$ into an investment account that earns $7 \%$ interest. How many years will it take to increase to $\$ 30,000$ ?
a) Use the "rule of 72 " to get an estimate...
b) Use logarithms to get an actual value....
B) A six year old savings account has $\$ 21,000 \ldots$

It has been compounding interest continuously at $4 \%$.
What was the original savings deposit?
C) If 300 mg of a sample decays to 200 mg
in 48 hours, find the half-life of the sample...

1) $3^{\mathrm{x}} \cdot \frac{-4}{3^{\mathrm{x}+1}}=8$
2) $2 \log _{4}(x)=\log _{4}(11 x+4)-.5 \log _{4} 9$
3) Graph $\log _{3}(9 x) \quad$ (hint: $9 x$ is "9 times x ")

4) $x+7 x^{(2 / 3)}+10 x^{(1 / 3)}=0$


## SOLUTIONS- -

I. Logarithm rules and properties

SOLUTIONS
Simplify

1) $\ln e^{3}+(\ln e)^{2}-\ln \left(4 e^{2}\right)=$ $3 \ln e+(1)^{2}-\left(\ln 4+\ln e^{2}\right)$
$4-\ln 4-2 \ln e$
$2-\ln 4$

Solve for $x$

$$
\text { 3) } \begin{aligned}
\log (\mathrm{x}+3) & =\log \mathrm{x}+\log 3 \\
\log (\mathrm{x}+3) & =\log (\mathrm{x} \cdot 3) \\
\mathrm{x}+3 & =3 \mathrm{x} \\
3 & =2 \mathrm{x} \\
\mathrm{x} & =3 / 2
\end{aligned}
$$

logarithm power rule $\quad \log _{2} x^{2}+\log _{2}\left(\frac{1}{x-1}\right)=5$
logarithm product rule $\log _{2}\left(\frac{x^{2}}{x-1}\right)=5$
change to exponential form $\frac{x^{2}}{x-1}=32$

$$
\begin{array}{ll}
\text { cross multiply } & x^{2}=32(x-1) \\
\text { quadratic formula } & x^{2}-32 x+32=0 \\
& x=1.033 \text { or } 30.967
\end{array}
$$

2) $2 \log _{4} 8+\left(\log _{3} 162-\log _{3} 2\right)=$ $\log _{4} 8^{2}+\left(\log _{3} \frac{162}{2}\right)$

$$
3+4=7
$$

4) $6+\log \left(x^{2}-80\right)=6$
$\log \left(x^{2}-80\right)=0$
$10^{0}=x^{2}-80$
$x^{2}-81=0$
$x=9$ and -9
5) $\log _{2}(x+7)-\log _{2}(x-7)=3$

$$
\log _{2} \frac{(x+7)}{(x-7)}=3
$$

$$
2^{3}=\frac{(x+7)}{(x-7)}
$$

$$
8 x-56=x+7
$$

$$
7 \mathrm{x}=63
$$

$$
x=9
$$

8) $\quad \log _{3}(-81)=\mathrm{x}$
no solution!
$3^{\mathrm{X}}$ cannot equal -81

Solve for $x$ :

1) $8^{5 x}=16^{3 x+4}$

$$
\begin{aligned}
\left(2^{3}\right)^{5 x} & =\left(2^{4}\right)^{3 x+4} \\
2^{15 x} & =2^{12 x+16} \\
15 x & =12 x+16 \\
3 x & =16 \\
x & =16 / 3
\end{aligned}
$$

$$
\begin{gathered}
\text { 2) } 4^{3-x} \cdot\left(\frac{1}{8}\right)^{2 x+5}=16^{x+3} \\
\left(2^{2}\right)^{3-x} \cdot\left(2^{-3}\right)^{2 x+5}=\left(2^{4}\right)^{x+3} \\
2^{6-2 x} \cdot 2^{-6 x-15}=2^{4 x+12} \\
2^{-8 x-9}=2^{4 x+12} \\
-8 x-9=4 x+12 \\
-21=12 x \\
x=-21 / 12=-7 / 4
\end{gathered}
$$

take the log of both sides:

$$
\begin{gathered}
\log 2^{x+3}=\log 3^{2 x-1} \\
(x+3) \log 2=(2 x-1) \log 3 \\
.301 x+.903=.954 x-.477 \\
1.380=.653 x \\
x=2.11
\end{gathered}
$$

5) $4^{3 \mathrm{x}+1}=5^{\mathrm{x}-2}$
one method:
take $\log$ (base4) of both sides...

$$
\begin{aligned}
\log _{4} 4^{3 x+1} & =\log _{4} 5^{x-2} \\
3 x+1 & =(x-2)\left(\log _{4} 5\right) \\
3 x+1 & =(x-2)(1.16) \\
1.84 x & =-3.32 \\
x & =-1.80 \quad \text { approximately }
\end{aligned}
$$

check: $4^{3(-1.80)+1}=5^{-1.80-2}$
3) $2^{x+1}=3^{x-1}$ $\log 2^{x+1}=\log 3^{x-1}$
$(x+1) \log 2=(x-1) \log 3$
$(x+1)(.301)=(x-1)(.477)$

$$
.301 x+.301=.477 x-.477
$$

$$
.778=.176 x
$$

$$
x=4.42 \text { (approx.) }
$$

$$
\text { Check: } 2^{4.42+1}=3^{4.42-1}
$$

$$
\begin{aligned}
& 2^{5.42}=3^{3.42} \text { (approximately) } \\
& 42.81=42.82
\end{aligned}
$$

6) $2^{2 / \log _{5} \mathrm{x}}=\frac{1}{16}$

$$
2^{2 \log _{5} x}=2^{-4}
$$

$$
\frac{2}{\log _{5} x}=-4
$$

$$
2=(-4) \log _{5} x
$$

$$
\frac{-1}{2}=\log _{5} x
$$

$$
\mathrm{x}=5^{-1 / 2} \text { or } \frac{1}{\sqrt{5}}
$$

$.00224 \approx .00221$
Solve for $x$ and $y$ :
7) $4^{x+y}=64$

$$
2^{2 x-y}=128
$$

$$
\begin{aligned}
& 4^{x+y}=4^{3} \\
& 2^{2 x-y}=2^{7}
\end{aligned}
$$

$$
\begin{gathered}
x+y=3 \\
2 x-y=7 \\
x=10 / 3 \\
y=-1 / 3
\end{gathered}
$$

8) $5^{2 x+y}=21$
$7^{4 x-y}=25$
$\log _{5}(21)=2 \mathrm{x}+\mathrm{y} \quad 1.8917=2 \mathrm{x}+\mathrm{y} \quad$ solve system:
$\log (25)=4 \mathrm{x}-\mathrm{y}+1.6542=4 \mathrm{x}-\mathrm{y} \quad$ combination/

| $\log _{5}(21)=2 \mathrm{x}+\mathrm{y}$ | $1.8917=2 \mathrm{x}+\mathrm{y}$ | solve system: <br> combination/ <br> $\log _{7}(25)=4 \mathrm{x}-\mathrm{y}$ |
| :---: | :---: | :---: |
|  | $+1.6542=4 \mathrm{x}-\mathrm{y}$ | elimation method |

1) $\log _{10} 11 \cdot \log _{11} 12 \cdot \log _{12} 13 \cdot \ldots \cdot \log _{999} 1000=$

Using change of base formula:

$$
\begin{aligned}
& \frac{\log 11}{\log 10} \cdot \frac{\log 12}{\log 11} \cdot \frac{\log 13}{\log 12} \ldots \frac{\log 999}{\log 998} \cdot \frac{\log 1000}{\log 999} \\
& \frac{\log 11}{\log 10} \cdot \frac{\log 12}{\log 11} \cdot \frac{\log 13}{\log 12} \ldots \frac{\log 999}{\log 998} \frac{(\log 1000}{\log 999} \\
& \frac{\log 1000}{\log 10}=\frac{3}{1}=3
\end{aligned}
$$

2) $\frac{\log _{25}(3)}{\log _{5}(81)}$
change of base $\frac{\frac{\log 3}{\log 25}}{\frac{\log 81}{\log 5}}$
$\frac{\log 3}{\log 25} \cdot \frac{\log 5}{\log 81}$
$\frac{\log 3}{\log 81} \cdot \frac{\log 5}{\log 25}$
$\log _{81}(3) \cdot \log _{25}(5)$
$\frac{1}{4} \cdot \frac{1}{2}=\frac{1}{8}$

Solve for $x$ :
3) $\log _{4} x+\log _{16} x=1$

$$
\begin{array}{cl}
\log _{4} x+\frac{\log _{4} x}{\log _{4} 16}=1 & \begin{array}{c}
\text { use change of base } \\
\text { (to base 4) }
\end{array} \\
\log _{4} x+\frac{\log _{4} x}{2}=1 & \\
2 \log _{4} x+\log _{4} x=2 & \text { log power rule } \\
\log _{4} x^{2}+\log _{4} x=2 & \text { log product rule } \\
\log _{4} x^{3}=2 & \begin{array}{l}
\text { convert to } \\
\text { exponential form }
\end{array} \\
x^{3}=16 & x=2 \sqrt{3}_{2}
\end{array}
$$

Find $y$ :
5) $\left(\log _{3} x\right)\left(\log _{x} 4 x\right)\left(\log _{4 x} y\right)=\log _{x} x^{2}$

Using change of base formula: $\frac{\log x}{\log 3} \cdot \frac{\log 4 x}{\log x} \cdot \frac{\log y}{\log 4 x}=\log _{x} x^{2}$

Simplify:

$$
\begin{gathered}
\frac{\log y}{\log 3}=\log _{x} x^{2} \\
\frac{\log y}{\log 3}=2 \\
\log _{3} y=2 \\
y=3^{2}=9
\end{gathered}
$$

4) $3^{x-9}=\frac{\log _{5} 8}{\log _{5} 2}$

$$
\frac{\frac{\log 8}{\log 5}}{\frac{\log 2}{\log 5}}=\frac{\log 8}{\log 2}
$$

$$
3^{x-9}=\frac{\log _{2} 8}{\log _{2} 2} \quad \begin{aligned}
& \text { Instead of using base } 10, \\
& \text { let's use base } 2 \ldots
\end{aligned}
$$

$$
3^{x-9}=\frac{3}{1}
$$

$$
3^{x-9}=3^{1}
$$

$$
x=10
$$

6) $\log _{9}\left(\frac{1}{27}\right)=\frac{y}{2}$

$$
\begin{array}{lll}
\begin{array}{l}
\text { change of base } \\
\text { (to base 3) }
\end{array} & \text { OR } & \begin{array}{l}
\text { change to } \\
\text { exponential form }
\end{array}
\end{array}
$$

$$
\frac{\log _{3}\left(\frac{1}{27}\right)}{\log _{3} 9}=\frac{\mathrm{y}}{2}
$$

$$
\frac{-3}{2}=\frac{y}{2}
$$

$$
y=-3
$$

$$
\begin{aligned}
9^{\frac{y}{2}} & =\frac{1}{27} \\
\left(3^{2}\right)^{\frac{y}{2}} & =\frac{1}{27} \\
\frac{2 y}{2} & =3^{-3} \\
\frac{2 y}{2} & =-3 \\
y & =-3
\end{aligned}
$$

1) $2^{2 x}-2^{x}-6=0$

$$
\begin{array}{ll}
\text { Hint: } \quad 2^{2 x}=\left(2^{x}\right)^{2} & \\
\begin{array}{ll}
\left(2^{x}\right)^{2}-2^{x}-6=0 & A^{2}-A-6=0 \\
\left(2^{x}-3\right)\left(2^{x}+2\right)=0 & (A-3)(A+2)=0 \\
2^{x}=3 & A=3,-2 \\
x=\frac{\log 3}{\log 2} \text { approx. } 1.585 & \\
2^{x}=-2 & \text { No solution }
\end{array}
\end{array}
$$

3) $4^{\mathrm{x}}-2^{\mathrm{x}+1}=3$

$$
\begin{gathered}
4^{x}-2^{x+1}-3=0 \\
\left(2^{2}\right)^{x}-\left(2^{x}\right)\left(2^{1}\right)-3=0 \\
\left(2^{x}\right)^{2}-\left(2^{x}\right)\left(2^{1}\right)-3=0 \\
\text { Let } y=2^{x} \\
y^{2}-2 y-3=0 \\
(y-3)(y+1)=0 \\
y=-1,3
\end{gathered}
$$

therefore,

5) $\left(\log _{3} \mathrm{x}\right)^{2}-\log _{3}\left(\mathrm{x}^{2}\right)=3$
$\left(\log _{3} x\right)^{2}-2\left(\log _{3} x\right)=3$
$\left(\log _{3} x\right)^{2}-2\left(\log _{3} x\right)-3=0$
$A^{2}-2 A-3=0$
$\left(\log _{3} x-3\right)\left(\log _{3} x+1\right)=0$

$$
\begin{array}{ll}
(A-3)(A+1)=0 \\
\left(\log _{3} x-3\right)=0 & \log _{3} x=3 \\
\left(\log _{3} x+1\right)=0 & \log _{3} x=-1
\end{array} \begin{aligned}
& x=27 \\
& x=1 / 3
\end{aligned}
$$

2) $3^{2 x+1}-7 \cdot 3^{x}+2=0$

Hint: recognize $3^{\mathrm{x}}$ as a term and use exponent rules
4) $e^{\mathrm{x}}-6 e^{-\mathrm{x}}=1$

$$
e^{\mathrm{x}} \cdot\left(e^{\mathrm{x}}-6 e^{-\mathrm{x}}-1\right)=0 \cdot e^{\mathrm{x}}
$$

$$
e^{2 \mathrm{x}}-6 e^{0}-e^{\mathrm{x}}=0
$$

$$
e^{2 \mathrm{x}}-e^{\mathrm{x}}-6=0
$$

$$
\text { let } \mathrm{A}=e^{\mathrm{X}}
$$

$$
A^{2}-A-6=0
$$

$$
\begin{aligned}
& (\mathrm{A}-3)(\mathrm{A}+2)=0 \\
& \mathrm{~A}=-2,3
\end{aligned}
$$

$$
e^{\mathrm{x}}=-2 \text { or } 3
$$

-2 is extraneous, because $e^{\mathrm{X}}$ will never be negative.

$$
e^{x}=3
$$

take natural $\log$ of each side

$$
\ln e^{x}=\ln 3
$$

$$
\mathrm{x} \ln e=1.0986 \text { (approximately) }
$$

$$
\begin{aligned}
& 3^{2 \mathrm{x}+1}=3^{2 \mathrm{x}} \cdot 3^{1} \\
& \text { Let } A=3^{x} \\
& 3 A^{2}-7 A+2=0 \\
& (3 A-1)(A-2)=0 \\
& \text { then, } 3^{2 \mathrm{x}}=\mathrm{A}^{2} \\
& \mathrm{~A}=1 / 3 \text { or } 2 \\
& \begin{array}{ll}
3^{\mathrm{x}}=1 / 3 & \mathrm{x}=-1 \\
3^{\mathrm{x}}=2 & \mathrm{x}=\frac{\log 2}{\log 3} \\
& x=.63 \text { (approx.) }
\end{array} \\
& \text { (substitute into original equation to check!) }
\end{aligned}
$$

V. Exponential and Logarithm inequalities

SOLUTIONS
Logarithm 2 Practice Test

1) $\ln (x+2)^{2}>3$
$\log _{e}(x+2)^{2}=3$
$e^{3}=(\mathrm{x}+2)^{2}$
$\pm \sqrt{20.08}=x+2$
$x=-2 \pm \sqrt{20.08}$

2) $6^{\mathrm{n}-1}<11^{\mathrm{n}}$
$(\mathrm{n}-1) \log 6=\mathrm{n} \log 11$
nlog $6-\log 6=$ nlog $11 \quad$ If $n=0$,
nlog6 - nlog $11=\log 6 \quad$ then $6^{0-1}<11^{0}$
$\mathrm{n}(\log 6-\log 11)=\log 6$
nlog $(6 / 11)=\log 6$
$\mathrm{n}=\log 6 / \log (6 / 11)$
$n>-2.9560$,
3) $\ln \left(x^{2}\right) \geq \ln (x+2)$

$$
\begin{array}{ll}
x^{2}>(x+2) & \text { assume terms are equal to determine the 'critical values' } \\
x-x-2=0 & \text { Then, test values in each region... }
\end{array}
$$

$$
(x-2)(x+1)=0 \quad x=-1,2
$$

$$
(-2,-1] \cup[2, \infty)
$$


ln cannot $=0$ or be negative $\ldots$
4)

$$
\begin{aligned}
& 2 \ln 3-\ln (x+3)>\ln 6 \\
& \ln 3^{2}-\ln (x+3)=\ln 6 \\
& \ln \frac{9}{(x+3)}=\ln 6 \\
& \frac{9}{(x+3)}=6 \\
& 6 x+18=9 \\
& x=-3 / 2
\end{aligned}
$$



So, $x<-3 / 2 \ldots$ BUT, it must be greater than -3 (otherwise, $\ln (x+3)$ is undefined)

$$
-3<x<-3 / 2
$$

5) When is $\log _{2}(x-2)>\log _{4}(x)$ ?
(first, find where sides are equal...)

$$
\begin{aligned}
\frac{\log _{2}(x-2)}{\log _{2} 2} & =\frac{\log _{2} x}{\log _{2} 4} \\
\frac{\log _{2}(x-2)}{1} & =\frac{\log _{2} x}{2} \\
2 \log _{2}(x-2) & =\log _{2} x \\
\log _{2}(x-2)^{2} & =\log _{2} x
\end{aligned}
$$

$$
\begin{aligned}
& (x-2)^{2}=x \\
& x^{2}-5 x+4=0 \\
& (x-4)(x-1)=0 \\
& x=1,4
\end{aligned}
$$

But, we eliminate 1 , because $\log _{2}(x-2)$ does not exist when $\mathrm{x}=1$
test $\mathrm{x}=3 \ldots$ and, the inequality does not work..

$x \geq 4$

1) What are the intercepts? (x-intercept and $y$-intercept)

$$
y=\log _{3}(x+9)-3
$$

$$
\begin{array}{ll}
y \text {-intercept occurs when } x=0 \quad(0, ?) \\
y=-1 & (0,-1) \\
x \text {-intercept occurs when } y=0(?, 0) \\
3=\log _{3}(x+9) \\
x+9=27 \quad x=18 & (18,0)
\end{array}
$$

2) The vertical asymptote is at $x=2$ containing point $(18,-5)$

What is the function in the log form

$$
f(x)=\log _{4}(x+A)+B ?
$$

since asymptote is $\mathrm{x}=2$,

$$
f(x)=\log _{4}(x-2)+B
$$

then, to find $B$, substitute the point $(18,-5)$

$$
\begin{array}{ll}
-5=\log _{4}(18-2)+\mathrm{B} & \\
-5-\mathrm{B}=\log _{4}(16) & f(\mathrm{x})=\log _{4}(\mathrm{x}-2)-7 \\
\mathrm{~B}=-7 &
\end{array}
$$

3) $\log _{10} 2=.30$

$$
\log _{10} 3=.48
$$

$$
\begin{array}{ll}
\text { What is } \log _{3} 4 ? & \log _{3}(2)^{2} \\
\text { (no calculator) } & 2 \cdot \log _{3}(2)
\end{array}
$$

$$
2 \cdot \frac{\log 2}{\log 3}=2 \cdot \frac{.30}{.48}=\frac{.60}{.48}=1.25
$$

4) Rewrite using base 5 :
a) $y=2(25)^{0.4 x}$

$$
\begin{array}{lr}
y=2\left(5^{2}\right)^{0.4 x} & \text { Find } 5^{x}=2 \\
y=2(5)^{0.8 x} & \log 5^{x}=\log 2 \\
x=\frac{\log 2}{\log 5}=.43 \\
5^{.43}=2
\end{array}
$$

$$
y=5^{(0.8 x+.43)} \quad(\text { approx })
$$

b) $y=(4)^{-0.2 x}$

$$
\begin{aligned}
& \text { Find } 5^{x}=4 \\
& \qquad \begin{array}{l}
\log 5^{x}=\log 4 \\
x=\frac{\log 4}{\log 5}=.86
\end{array}
\end{aligned}
$$

$$
y=\left(5^{.86}\right)^{-0.2 x}
$$

$$
\begin{aligned}
& f(\mathrm{x})=4 e^{(\mathrm{x}+2)}+16 \\
& \mathrm{y}=4 e^{(\mathrm{x}+2)}+16 \text { switch } \mathrm{x} \text { and } \mathrm{y} \\
& x=4 e^{(y+2)}+16 \\
& x-16=4 e^{(y+2)} \quad \ln \frac{x-16}{4}=y+2 \\
& \frac{x-16}{4}=e^{(y+2)} \\
& h(x)=3-\log (2+x) \\
& y=3-\log (2+x) \quad \text { switch } x \text { and } y \\
& \mathrm{x}=3-\log (2+\mathrm{y}) \quad \text { solve for } \mathrm{y} \\
& 3-x=\log (2+y) \\
& 10^{3-x}=2+y \\
& h^{-1}(\mathrm{x})=10^{3-\mathrm{x}}-2
\end{aligned}
$$

6) Word Problems
A) You deposit $\$ 10,000$ into an investment account that earns $7 \%$ interest.

How many years will it take to increase to $\$ 30,000$ ?
a) Use the "rule of 72 " to get an estimate... "rule of 72 " estimates it'll take $72 / 7$, or approx. 10 years to double.. $\$ 10,000$ to $\$ 20,000$ will take 10 years...
$\$ 20,000$ to $\$ 40,000$ will take another 10 years...
b) Use logarithms to get an actual value....

Since we are looking for an estimate for $\$ 30,000$, half-way, it takes approx 15 years...

$$
\begin{aligned}
\mathrm{A}=\mathrm{P} e^{\mathrm{rt}} \quad 30,000 & =10,000 e^{.07 \mathrm{t}} \\
3 & =e^{.07 \mathrm{t}} \\
\ln 3 & =\ln e^{.07 \mathrm{t}}
\end{aligned} \quad \mathrm{t}=\frac{\ln 3}{.07}=15.69 \text { years (approx) }
$$

B) A six year old savings account has $\$ 21,000 \ldots$

It has been compounding interest continuously at $4 \%$.
What was the original savings deposit?

$$
\begin{aligned}
& \mathrm{A}=\mathrm{P} e^{\mathrm{rt}} \\
& 21,000=\mathrm{P} e^{(.04)(6)} \\
& 21,000=\mathrm{P}(1.27) \\
& \mathrm{P}=16,519
\end{aligned}
$$

C) If 300 mg of a sample decays to 200 mg in 48 hours, find the half-life of the sample...

Step 1: Find the rate $r$

$$
\begin{aligned}
\mathrm{A} & =\mathrm{P} e^{\mathrm{rt}} \\
200 \mathrm{mg} & =300 \mathrm{mg}(e)^{\mathrm{r}(48)} \\
\frac{2}{3} & =e^{48 \mathrm{r}} \\
\ln \left(\frac{2}{3}\right) & =48 \mathrm{r}(\ln e) \\
\mathrm{r} & =-.008447
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{A}=\mathrm{P} e^{\mathrm{rt}} \\
150 \mathrm{mg}=300 \mathrm{mg}(e)^{-.008447 \mathrm{t}} \\
\ln \left(\frac{1}{2}\right)=-.008447 \mathrm{t}
\end{gathered}
$$

[^0]***VII. Challenge Questions
SOLUTIONS

1) $3^{x} \cdot \frac{-4}{3^{x+1}}=8$

$$
\begin{aligned}
-4 \cdot \frac{3^{x}}{3^{x+1}} & =8 \\
\frac{3^{x}}{3^{x}+1} & =-2 \quad \text { NO SOLUTION } \\
3^{-1} & =-2
\end{aligned}
$$

3) $2 \log _{4}(x)=\log _{4}(11 x+4)-.5 \log _{4} 9$
$\log _{4}(x)^{2}=\log _{4}(11 x+4)-\log _{4} 9^{-5}$
$\log _{4}\left(x^{2}\right)=\log _{4} \frac{(11 x+4)}{3}$
$3 x^{2}=11 x+4$
$3 x^{2}-11 x-4=0$
$(3 x+1)(x-4)=0$
$\mathrm{x}=4$ or $-1 / 3$
ONLY $\mathrm{x}=4$
4) $x+7 x^{(2 / 3)}+10 x^{(1 / 3)}=0$

Use substitution
(choose the "smallest variable exponent")

$$
\begin{gathered}
\text { Let } \mathrm{U}=\mathrm{x}^{(1 / 3)} \\
\mathrm{U}^{3}+7 \mathrm{U}^{2}+10 \mathrm{U}=0 \\
\mathrm{U}(\mathrm{U}+2)(\mathrm{U}+5)=0 \\
\mathrm{U}=-2,-5,0
\end{gathered}
$$

4) 

Graph $\log _{3}(9 x) \quad$ (hint: $9 x$ is "9 times $x$ ")
$\log _{3}(9)+\log _{3}(x)=2+\log _{3}(x)$


Points include: $(1,2)(9,4)$ and $(1 / 9,0)$
2)

$$
\begin{array}{cl}
\log _{5}(x+3)= & \log _{5}(x-1)+\log _{3} 9+6^{\log _{6} 2} \\
\log _{5}(x+3)-\log _{5}(x-1) & =2+2 \\
\log _{5} \frac{(x+3)}{(x-1)} & =4 \\
\frac{(x+3)}{(x-1)} & =625 \\
625 x-625=x+3 & x=\frac{157}{156} \\
624 x=628 &
\end{array}
$$

|  |  |  |
| :--- | :--- | :--- |
| $\mathrm{U}=-2:$ | $-2=\mathrm{x}^{(1 / 3)}$ | $\mathrm{x}=-8$ |
| $\mathrm{U}=0:$ | $0=\mathrm{x}^{(1 / 3)}$ | $\mathrm{x}=0$ |
| $\mathrm{U}=-5:$ | $-5=\mathrm{x}^{(1 / 3)}$ | $\mathrm{x}=-125$ |

(plug in solutions to original equation to check)

$$
\begin{aligned}
& -8+7(4)+10(-2)=0 \\
& 0+7(0)+10(0)=0 \\
& -125+7(25)+10(-5)=0
\end{aligned}
$$

Thanks for visiting. (Hope it helped!)
If you have questions, suggestions, or requests, let us know.
Cheers


Also, at Mathplane.ORG.
Or, check out our stores at Teacherspayteachers and TES


Using Change of Base Formula:

$$
\begin{gathered}
\frac{\log 3}{\log 2} \cdot \frac{\log 4}{\log 3} \cdot \frac{\log 5}{\log 4} \cdot \frac{\log 6}{\log 5} \cdot \frac{\log 7}{\log 6} \cdot \frac{\log 8}{\log 7} \\
\frac{\log 8}{\log 2}=\log _{2} 8 \quad=3
\end{gathered}
$$


[^0]:    82 hours

