Linear Systems

Examples and Practice Tests (and, solutions)

Topics include solving, graphing, elimination and substitution methods, word problems, classifying systems, 3 variables, and more.

Classify the following linear systems:
a)

b) $2 x+3 y=-10$ $-4 x-6 y=20$
c) $y=3 x+7$
$y=3 x-7$
Inconsistent
(parallel lines)
(same lines)
infinite number of solutions
Consistent and independent one solution

Can you draw consistent, independent linear system where the lines have the same y-intercept?

Note: a consistent, dependent linear system would obviously have a common y-intercept...

Six Ways to solve a linear system: | $2 \mathrm{x}+3 \mathrm{y}=12$ |
| ---: |
| $\mathrm{y}=\mathrm{x}-11$ |

1) Elimination/Combination Method

(Write equations in standard form)	(Choose variable to eliminate, and if necessary, change equation(s))	(Combine equations and eliminate variable)	Since $x=9$, then
$2 x+3 y=12$	$2 x+3 y=12$	$5 x+0 y=45$	$y=(9)-11$, so
$x-y=11$	$3 x-3 y=33$	$x=9$	$y=-2$

2) Substitution Method

$2 x+3 y=12$ Substitute second equation into the first.... $\quad$$2 x+3(x-11)$ $=12$ $2 x+3 x-33$ $=12$ $5 x$ $=45$ x $=9$	Since $\mathrm{x}=9$, $\begin{aligned} & 2(9)+3 y=12 \\ & \text { so, } y=-2 \end{aligned}$
3) Graphing 5) Augmented Matrix Place coefficients and solutions into 2×3 augmented matrix...	4) Matrix $A X=B$ then, $X=A^{-1} B$ $\begin{array}{rc} 2 \mathrm{x}+3 \mathrm{y}=12 & \begin{array}{c} \text { Place coefficients and } \\ \text { solutions into matrices } \end{array} \\ {\left[\begin{array}{cc} 2 & 3 \\ 1 & -1 \end{array}\right]} \\ \mathrm{A} & {\left[\begin{array}{c} \mathrm{x} \\ \mathrm{y} \end{array}\right]=} \\ \mathrm{X} & { }_{\mathrm{B}} \end{array}$ Use the inverse of A...
$\left[\begin{array}{cc:c}1 & -1 & 11\end{array}\right]$switch rows.. $\left[\begin{array}{cc:c}1 & -1 & 11 \\ 2 & 3 & 12\end{array}\right]$R1 x (-2), then add to R2 $\left[\begin{array}{cc:c}1 & -1 & 11 \\ 0 & 5 & -10\end{array}\right]$R2 x (1/5) Reduced Row Echelon Form (RREF) displays the solutions for x and y $\left[\begin{array}{cc:c}1 & -1 & 11 \\ 0 & 1 & -2\end{array}\right]$add R2 to R1$\left[\begin{array}{lll}1 & 0 & 9 \\ 0 & 1 & -2\end{array}\right]$	

Example: 34 kids and 6 adult chaperones are going to the amusement park.
Linear Systems: Word Problem Applications
They can take cars and/or vans.
Each van seats 7, and each car seats 5 .
If all 6 adults will drive, how many will go in each vehicle?
Step 1: Set Variables

$$
\begin{aligned}
& \mathrm{V}=\# \text { of vans } \\
& \mathrm{C}=\# \text { of cars }
\end{aligned}
$$

Step 2: Set up equations/constraints

(Number of riders)	$7 \mathrm{~V}+5 \mathrm{C}=(34+6)$	(Van and car drivers) $\mathrm{V}+\mathrm{C}=6$	
	7 in	5 in	40
	each	each	riders
van car			

Step 3: Solve (we have 2 equations and 2 unknowns)
use combination method:

$$
\begin{array}{cc}
7 \mathrm{~V}+5 \mathrm{C}=40 \\
\mathrm{~V}+\mathrm{C}=6
\end{array} \quad \begin{gathered}
7 \mathrm{~V}+5 \mathrm{C}=40 \\
-5 \mathrm{~V}-5 \mathrm{C}=-30
\end{gathered} \quad \begin{gathered}
2 \mathrm{~V}=10 \\
\mathrm{~V}=5 \quad \mathrm{C}=1
\end{gathered}
$$

The group will take 5 vans and 1 car...

Example: An orchestra has a string to wind ratio of $9: 4 . .$.

If there are 91 total instruments, how many of each are there?
Step 1: Set up variables Let $\mathrm{S}=$ \# of string instruments
$\mathrm{W}=\#$ of wind instruments
Step 2: Set up equations "91 total instruments" $\mathrm{S}+\mathrm{W}=91$

$$
\text { "string to wind ratio of 9:4" } 9 \mathrm{~W}=4 \mathrm{~S} \quad \text { or } \quad \mathrm{S}=\frac{9}{4} \mathrm{~W} \quad \begin{aligned}
& \text { (ex: if there are } 40 \mathrm{~W}, \\
& \text { then there are } 90 \mathrm{~S}
\end{aligned}
$$

Step 3: Solve

$$
S+W=91 \quad S=\frac{9}{4} W
$$

(since we have 2 equations and 2 unknowns,
Use substitution method: $\left\langle\frac{9}{4} \mathrm{~W}\right\}+\mathrm{W}=91$ we have a system....)

$$
\begin{aligned}
\frac{13}{4} \mathrm{~W} & =91 \\
\frac{4}{13} \cdot \frac{13}{4} \mathrm{~W} & =91 \cdot \frac{4}{13} \quad \mathrm{~W}=28 \quad \text { so, } \mathrm{S}=63
\end{aligned}
$$

The orchestra has 28 wind instruments and 63 string instruments.

Example: The math guy spends an afternoon rowing up and down a river.
In the morning, when he rowed with the current, he traveled 24 miles in 3 hours.
In the afternoon, when he rowed against the current, he went 16 miles in 4 hours.
What is the speed of the current?
Step 1: Figure out the variables Let $\mathrm{C}=$ speed of the current Let $\mathrm{R}=$ speed of rower)

Step 2: Set equations \quad distance $=$ rate x time
(with the current) 24 miles $=(\mathrm{R}+\mathrm{C})(3$ hours $)$
(against the current) 16 miles $=(\mathrm{R}-\mathrm{C})(4$ hours $)$
$\mathrm{R}=6 \mathrm{miles} /$ hour
Step 3: Solve

$$
8 \frac{\text { miles }}{\text { hour }}=\mathrm{R}+\mathrm{C}
$$

$12 \frac{\text { miles }}{\text { hour }}=2 \mathrm{R}+0 \mathrm{C}$

$$
4 \frac{\text { miles }}{\text { hour }}=\mathrm{R}-\mathrm{C} \quad \begin{aligned}
& \text { combine } \\
& \text { equations }
\end{aligned}
$$

The math guy is rowing at a speed of 6 miles per hour... So, the speed of the current is 2 miles per hour

Example: Solve the system:

$$
\begin{aligned}
& 4 x+9 y=8 \\
& 8 x+6 z=-1 \\
& 6 y+6 z=-1
\end{aligned}
$$

Combine 2 nd and 3rd equations:

Rewrite the equations:

$$
\begin{aligned}
& 4 x+9 y+0 z=8 \\
& 8 x+0 y+6 z=-1 \\
& 0 x+6 y+6 z=-1
\end{aligned}
$$

$(-1)\left\{\begin{array}{r}8 \mathrm{x}+0 \mathrm{y}+6 \mathrm{z}=-1 \\ 0 \mathrm{x}+6 \mathrm{y}+6 \mathrm{z}=-1 \\ -8 \mathrm{x}+0 \mathrm{y}-6 \mathrm{z}=1\end{array}\right.$

$$
0 x+6 y+6 z=-1 \quad \rightarrow \quad-8 x+6 y=0
$$

then, combine the outcome with the 1st equation:

Use substitution to get remaining terms:

$$
\begin{aligned}
& -8 x+6 y=0 \\
& -8 x+6(2 / 3)=0 \\
& 4=8 x \\
& x=1 / 2
\end{aligned}
$$

$$
\begin{aligned}
& 8 x+6 z=-1 \\
& 8(1 / 2)+6 z=-1 \\
& 6 z=-5 \\
& z=-5 / 6
\end{aligned}
$$

Example: An automobile gets 36 miles per gallon in the city, and 46 miles per gallon on the highway.
With a 13-gallon gas tank, this automobile travelled 526 miles.
How many gallons were used driving in the city?

Step 1: Establish variables (and make a grid)

$$
x=\text { number of gallons }
$$

$y=$ number of miles

	City	Highway
Fuel	x	$(13-\mathrm{x})$
Rate	$36 \mathrm{~m} / \mathrm{g}$	$46 \mathrm{~m} / \mathrm{g}$
Distance	y	$(526-\mathrm{y})$

Step 2: Construct system

$$
\begin{aligned}
& y=36 \frac{\text { miles }}{\text { gallon }} \text { (x gallons) } \\
& (526-y)=46 \frac{\text { miles }}{\text { gallon }}(13-x)(\text { gallons })
\end{aligned}
$$

$$
\text { (2 equations, } 2 \text { unknowns) }
$$

Step 3: Solve (using substitution)

$$
\begin{gathered}
(526-(36 x))=46(13-x) \\
526-598=36 x-46 x \\
-72=-10 x \\
x=7.2 \text { gallons }
\end{gathered}
$$

Step 4: Check answer
city: 7.2 gallons $\times 36 \mathrm{~m} / \mathrm{g}=259.2$ miles
highway: 5.8 gallons $\times 46 \mathrm{~m} / \mathrm{g}=266.8$ miles
total miles $=526$ miles

$$
\begin{aligned}
2 x+3 y-z & =12 \\
3 x-4 y+z & =-9 \\
x+5 y+z & =7
\end{aligned}
$$

Example: Solve the system of linear equations

$$
\begin{aligned}
2 x+4 y-7 z & =15 \\
3 y+z & =10 \\
-6 x+2 z & =-28
\end{aligned}
$$

Step 1: Recognize the efficient approach...
In this case, it seems the elimination method is easiest.. (get rid of the z's first)
Step 2: Solve
Combine 1st and 2nd equations:
Combine 1 st and 3rd equations:

$2 \mathrm{x}+3 \mathrm{y}-\mathrm{z}$	$=12$
$3 \mathrm{x}-4 \mathrm{y}+\mathrm{z}$	$=-9$
$5 \mathrm{x}-\mathrm{y}$	$=3$

Then, solve the 2×2 linear system....

$$
\begin{aligned}
& 5 x-y=3 \leadsto 40 x-8 y=24 \backslash \\
& 3 x+8 y=19 \leadsto \frac{3 x+8 y=19}{43 x}=43
\end{aligned} \text { so, } y=22 子 \begin{aligned}
& x=1 \\
& \text { If } x=1 \text { and } y=2, \text { then } z=-4
\end{aligned}
$$

Step 3: Check solutions..
$(1,2,-4) \quad$ Plug into ALL 3 EQUATIONS!

$$
\begin{aligned}
& 2 \mathrm{x}+3 \mathrm{y}-\mathrm{z}=12 \\
& 3 \mathrm{x}-4 \mathrm{y}+\mathrm{z}=-9 \\
& \mathrm{x}+5 \mathrm{y}+\mathrm{z}=7
\end{aligned} \quad \begin{aligned}
& 2+6 \quad-(-4)=12 \\
& 3-8+(-4)=-9 \\
& 3
\end{aligned}
$$

Step 1: Recognize the efficient approach...
In this case, the substitution method seems most efficient...
Step 2: Using the middle equation, we can solve for $z \ldots$

$$
3 y+z=10 \quad \Longleftrightarrow \quad z=10-3 y
$$

Then, substitute into the 3rd equation... and, into the 1st equation...

$$
\begin{array}{rl}
-6 x & 2 \mathrm{x}=-28 \\
-6 \mathrm{x}+2(10-3 y)=-28 & 2 x+4 y-7(10-3 y)=15 \\
-6 x+20-6 y=-28 & 2 x+4 y-70+21 y=15 \\
-6 x-6 y=-48 & 2 x+25 y=85
\end{array}
$$

Now combine the results:

$$
\left.\begin{array}{r}
-6 x-6 y=-48 \sim \begin{array}{r}
-2 x-2 y \\
2 x+25 y=85
\end{array} \quad-16 \\
2 x+25 y=85
\end{array}\right) \quad \begin{array}{r}
23 y=69 \\
y=3 \ldots \quad \text { then, } x=5 \\
\text { and, } z=1
\end{array}
$$

Step 3: Check the answer...

$$
\begin{aligned}
& (5,3,1) \\
& 2 x+4 y-7 z=15 \\
& 3 y+z=10 \\
& -6 x \quad+2 z=-28 \\
& \begin{array}{r}
10+12-7=15 \\
9+1=10 \\
-30
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 2 x-3 y=10 \\
& -4 x+6 y=-20
\end{aligned}
$$

Using elimination method:

$$
2(2 \mathrm{x}-3 \mathrm{y}=10) \leftrightharpoons \begin{aligned}
4 \mathrm{x}-6 \mathrm{y} & =20 \\
-4 \mathrm{x}+6 \mathrm{y} & =-20 \\
0 & =0
\end{aligned}
$$

$$
(5,0)(1 / 2,-3) \text { are } 2 \text { examples.... }
$$

To specify, isolate one of the variables...

$$
\begin{aligned}
2 \mathrm{x}-3 \mathrm{y} & =10 \\
2 \mathrm{x}-10 & =3 \mathrm{y} \\
\frac{2 \mathrm{x}-10}{3} & =\mathrm{y}
\end{aligned}
$$

Example: The following is an augmented matrix.

$$
x-2 y+4 z=-2
$$

Find the solution.

$$
\Rightarrow \text { dependent... }
$$

So, we'll take one of the dependent equations and isolate a variable...

$$
y=3 z+4
$$

Then, plug it into the first equation...

$$
\begin{aligned}
& x-2(3 z+4)+4 z=-2 \\
& x-6 z-8+4 z=-2
\end{aligned}
$$

$$
\begin{aligned}
& x=x \\
& y=\frac{3}{2} x-5 \\
& z=\frac{1}{2} x-3
\end{aligned}
$$

Checking the answer:

$$
y=3 z+4
$$

$$
\begin{aligned}
x-2 y+4 z & =-2 \\
y-3 z & =4 \\
-y+3 z & =-4
\end{aligned}
$$

$$
y=3\left(\frac{1}{2} x-3\right)+4
$$

そ \quad,
Let's check some solutions...

$$
\begin{aligned}
x-2 z & =6 \\
2 z & =x-6 \\
z & =\frac{1}{2} x-3
\end{aligned}
$$

$$
y=\frac{3}{2} x-5
$$

Note: everything is solved for x
(similar to working with parametric equations)

$$
\left(x, \frac{3}{2} x-5, \quad \frac{1}{2} x-3\right)
$$

or, the (x, y, z) solution can be written with another variable
ex: ($B, 3 / 2(B)-5,1 / 2(B)-3)$
a) in terms of x
b) in terms of y
c) in terms of z
$2 x-3 y+z=11$
$5 \mathrm{x}+\mathrm{y}-2 \mathrm{z}=8$

Using "elimination" method, get rid of the y terms...

$$
\begin{aligned}
2 \mathrm{x}-3 \mathrm{y}+\mathrm{z}=11 \\
5 \mathrm{x}+\mathrm{y}-2 \mathrm{z}=8 \\
15 \mathrm{x}+3 \mathrm{y}-6 \mathrm{z}=24
\end{aligned} \quad \begin{aligned}
17 \mathrm{x}-5 \mathrm{z} & =35 \\
17 \mathrm{x} & =35+5 \mathrm{z} \\
\mathrm{x} & =\frac{35}{17}+\frac{5}{17} \mathrm{z} \quad \mathrm{x} \text { in terms of } \mathrm{z}
\end{aligned} \quad \begin{aligned}
& 17 \mathrm{x}-35=5 \mathrm{z} \\
& \mathrm{z} \text { in terms of } \mathrm{x} \\
& \frac{17}{5} \mathrm{x}-7=\mathrm{z}
\end{aligned}
$$

Using "elimination" method, get rid of the x terms...

$$
17 y+39=9 z
$$

$$
z \text { in terms of } y \quad \frac{17}{9} y+\frac{39}{9}=z
$$

Then, using "elimination", get rid of the z's ...
This will find x in terms of y and y in terms of $\mathrm{x} \ldots$.
OR, use "substitution" with the above equations...
z in terms of $y \quad \frac{17}{9} y+\frac{39}{9}=z$

$$
x=\frac{35}{17}+\frac{5}{17}\left(\frac{17}{9} y+\frac{39}{9}\right)
$$

x in terms of $z \quad x=\frac{35}{17}+\frac{5}{17} z$

$$
x=\frac{35}{17}+\frac{5}{9} y+\frac{65}{51}
$$

x in terms of y

$$
x=\frac{5}{9} y+\frac{170}{51}
$$

$$
x-\frac{170}{51}=\frac{5}{9} y
$$

y in terms of $x \quad \frac{9}{5} x-6=y$

1) $y=3 x+8$
$y=\frac{-1}{2} x+15$
2) $y=-2 x-7$
$y=4 x+11$
3) $y=5 x+12$
$(y-4)=6(x+1)$
4) $y=-4 x+17$
$(y+2)=\frac{1}{3}(x-8)$
5) $2 x+7 y=25$
$3 x-y=3$
6) $2 x-3 y=9$
$y=\frac{2}{3} x-3$
7) $.3 x-.5 y=1$
$y=.2 x+6$
8) $2 x+y=7$ $x=4$
9) $-3 x+6 y=12$
$\frac{1}{2} x-y=8$
10) $y+5=-(6-x)$
$x=-y+19$
11) $\frac{1}{2} x-5 y=9$
$\frac{1}{4} x+6 y=-4$
12) $x+y=2$
$y=-2(x-5)+1$
13) $y-6=.2(x+10)$
$y+1=.5(x+15)$

$$
\begin{aligned}
& \text { 14) } x=2 y-12 \\
& (y-6)=4 x-7
\end{aligned}
$$

Convert each equation into slope intercept form
a) $2 x+6 y=12$
b) $y+3=2(x+8)$

Convert each equation into standard form

a) $y=3 x+5$
c) $.2 x+.7 y=11$
b) $y+1=\frac{1}{2}(x-6)$
d) $y=-(x+7)+8$
c) $x+\frac{1}{2} y=5$

$$
\text { 1) } \begin{aligned}
& y=3 x+8 \\
& y=\frac{-1}{2} x+15
\end{aligned}
$$

substitution: $3 x+8=\frac{-1}{2} x+15$ for ease, let's get rid of fractions by multiplying both sides by 2

$$
\begin{aligned}
6 \mathrm{x}+16 & =-\mathrm{x}+30 & & \\
7 \mathrm{x} & =14 & & \mathrm{y}=3(2)+8 \\
\mathrm{x} & =2 & & \mathrm{y}=14
\end{aligned}
$$

$(2,14) \quad * *$ to check: plug $(2,4)$ into the other equation...

$$
\begin{gathered}
14=\frac{-1}{2}(2)+15 \\
14=-1+15
\end{gathered}
$$

2) $\begin{aligned} y & =-2 x-7 \\ y & =4 x+11\end{aligned}$

SOLUTIONS
substitution: $-2 \mathrm{x}-7=4 \mathrm{x}+11$

$$
-18=6 x
$$

$$
x=-3
$$

$$
y=4(-3)+11=-1
$$

$$
(-3,-1)
$$

elimination: $\quad y=-2 x-7$

$$
-(y=4 x+11)
$$

$$
0=-6 x-18
$$

$$
18=-6 x \quad y=-2(-3)-7
$$

$$
x=-3 \quad y=-1
$$

$$
\text { 5) } \begin{aligned}
2 x+7 y & =25 \\
3 x-y & =3
\end{aligned}
$$

elimination: (easier because equations are in standard form)

$$
2 x+7 y=25
$$

$$
7(3 x-y=3)
$$

$$
2 x+7 y=25
$$

$$
+21 x-7 y=21
$$

$$
23 \mathrm{x}=46
$$

$$
x=2
$$

then, $\mathrm{y}=3$

$$
(2,3)
$$

8) $2 x+y=7$

$$
x=4
$$

substitution:
Just place second equation into first!

$$
2(4)+y=7
$$

$$
y=-1 \text { and, of course } x=4
$$

$$
(4,-1)
$$

$$
\begin{aligned}
& \text { 3) } y=5 x+12 \quad \text { mathplane.com } \\
& \quad(y-4)=6(x+1)
\end{aligned}
$$

substitution: put " y " into 2 nd equation

$$
\begin{gathered}
((5 x+12)-4)=6(x+1) \\
5 x+8=6 x+6 \\
2=x \\
\text { If } x=2, \text { then } y=5(2)+12 \\
y=22 \\
(2,22)
\end{gathered}
$$

To check: plug solution into the other equation...

$$
\begin{aligned}
(y-4) & =6(x+1) \\
(22-4) & =6(2+1) \\
18 & =18
\end{aligned}
$$

6) $2 x-3 y=9$

$$
y=\frac{2}{3} x-3
$$

substitution:
$2 x-3\left(\frac{2}{3} x-3\right)=9$
$2 x-2 x+9=9$
$0=0$
elimination:

$$
2 x-3 y=9
$$

infinite solutions
$y=\frac{2}{3} x-3$
$-3 y=2 x-9 \quad$ SAME LINES!
$9=2 x-3 y$
9) $-3 x+6 y=12$
$\frac{1}{2} x-y=8$
elimination:
first, multiply second equation by $6 \ldots$

$$
\begin{gathered}
-3 x+6 y=12 \\
3 x-6 y=48 \\
\hline 0+0=60
\end{gathered}
$$

PARALLEL LINES!!

No real Solution

$$
x=20 \text { then, } y=10
$$

10) $y+5=-(6-x)$
$x=-y+19$
substitution:

$$
\begin{aligned}
y+5 & =-(6-(-y+19)) \\
y+5 & =-(-13+y) \\
2 y & =8 \\
y & =4
\end{aligned}
$$

If $\mathrm{y}=4$, then $\mathrm{x}=-(4)+19$
$\mathrm{x}=15$
$(15,4)$

To check, plug solution into BOTH equations:

$$
\begin{aligned}
(4)+5 & =-(6-(15)) \\
9 & =9
\end{aligned}
$$

11) $\frac{1}{2} x-5 y=9$
$\frac{1}{4} x+6 y=-4$
elimination:
For ease, I'll get rid of the fractions.. (multiply 1 st by 2 ; multiply 2 nd by 4)

$$
x-10 y=18
$$

$$
-\frac{x+24 y=-16}{-34 y=34}
$$

$$
\mathrm{y}=-1
$$

if $\mathrm{y}=-1$, then using substitution, we can see $\mathrm{x}=8$

$$
(8,-1)
$$

12) $x+y=2$
$y=-2(x-5)+1$
substitution:
since y is isolated in the second equation, we'll substitute it into the first...

$$
x+-2(x-5)+1=2
$$

mathplane.com

$$
x-2 x+10+1=2
$$

$$
9=\mathrm{x} \quad(9,-7)
$$

$$
\text { so, } y=-7
$$

13) $\mathrm{y}-6=.2(\mathrm{x}+10)$

$$
y+1=.5(x+15)
$$

First, multiply both equations by 10

$$
\begin{aligned}
& 10 y-60=2 x+20 \\
& 10 y+10=5 x+75
\end{aligned}
$$

Since y coefficient are the same, we'll use elimination:

$$
\begin{aligned}
10 \mathrm{y}-60 & =2 \mathrm{x}+20 \\
-(10 \mathrm{y}+10 & =5 \mathrm{x}+75) \\
\hline 0 \mathrm{y}-70 & =-3 \mathrm{x}-55 \\
3 \mathrm{x} & =15 \\
\mathrm{x} & =5
\end{aligned}
$$

14) $x=2 y-12$

$$
(y-6)=4 x-7
$$

since x is by itself in the 1st equation... substitution:

$$
\begin{aligned}
(y-6) & =4(2 y-12)-7 \\
y-6 & =8 y-48-7 \\
49 & =7 y \\
y & =7 \text { then, } x=2 \\
& (2,7)
\end{aligned}
$$

then, with substitution, $\mathrm{y}=9$

Convert each equation into slope intercept form

$$
\mathrm{y}=\mathrm{mx}+\mathrm{b}
$$

a) $2 x+6 y=12$

$$
\begin{aligned}
& 6 y=12-2 x \\
& y=-\frac{1}{3} x+2
\end{aligned}
$$

b) $y+3=2(x+8)$
$y+3=2 x+16$

$$
\mathrm{y}=2 \mathrm{x}+13
$$

c) $x+\frac{1}{2} y=5$

$$
\frac{1}{2} y=-x+5
$$

$$
y=-2 x+10
$$

Convert each equation into standard form
a) $y=3 x+5$
$-3 x+y=5$
$3 x-y=-5$
b) $y+1=\frac{1}{2}(x-6)$

$$
2 y+2=(x-6)
$$

$$
-x+2 y=-8
$$

$$
x-2 y=8
$$

$A x+B y=C \quad$ where A is positive integer (and B and C are integers)
c) $.2 x+.7 y=11$

$$
2 x+7 y=110
$$

d) $y=-(x+7)+8$

$$
y=-x-7+8
$$

$$
x+y=1
$$

More Practice questions- \rightarrow

Linear Systems Quick Quiz

Solve and Graph the following Systems:

1) $3 x+y=9$

$$
y=-2 x+4
$$

2) $y=6$
$2 x-3 y=4$

3) $y=\frac{1}{2} x-\frac{1}{4}$
$2 x+4 y=1$
4) $x=5$
$y=6$

1) Jim bought 65 cupcakes and cookies for his birthday party. Each cupcake cost $\$ 1$ and each cookies cost 75 cents. If he paid $\$ 57.50$ for the treats, how many of each did he buy?
2) A high school play has 2 freshmen, 5 sophomores, and 11 juniors.

If $1 / 3$ of the cast is composed of seniors, how many seniors are in the play?
3) A movie theater charges 9 dollars for adults, 5 dollars for kids, and 3 dollars for seniors.

Last month, the theater sold 9,500 tickets and generated $\$ 57,920$.
If the theater sold twice as many tickets to kids as seniors,
how many of each ticket did the theater sell?
4) A bartender wants to make 81 ounces of a 20% cranberry drink mix. How much pure cranberry juice should he mix with a 10% cranberry blend?
5) Solve the following linear system:

$$
\begin{aligned}
& 9 x+9 y+4 z=-56 \\
& -4 x-4 y+z=11 \\
& x+y+z=-9
\end{aligned}
$$

Linear Systems Quick Quiz

Solve and Graph the following Systems:

1) $3 x+y=9$
$y=-2 x+4$
solution is $(5,-6)$
(substitution method)

$$
\begin{array}{r}
3 x+(-2 x+4)=9 \\
x=5 \\
3(5)+y=9 \\
y=-6
\end{array}
$$

substitute 2 nd equation into 1 st. solve.
place x value into one of the equations to get y .
check: $(-6)=-2(5)+4$ $-6=-6$
check solution in other equation.
2) $y=6$

$$
2 x-3 y=4
$$

(substitution/combine the equations)

$$
\begin{aligned}
2 \mathrm{x}-3(6) & =4 \\
2 \mathrm{x} & =22 \\
\mathrm{x} & =11
\end{aligned}
$$

$$
\text { solution is }(11,6)
$$

and, $y=6$
3) $\begin{array}{ll}y=\frac{1}{2} x-\frac{1}{4} & \text { equation } 1 \\ 2 x+4 y=1 & \text { equation } 2\end{array}$
(combination/elimination method)

$$
\begin{aligned}
& 4 y=2 x-1 \quad 1 \\
& -2 x+4 y=-1 \quad 1 \\
& 2 x+4 y=1 \quad 2 \\
& 8 y=0 \quad 1+2 \\
& y=0 \quad \text { solution } \\
& 2 \mathrm{x}+4(0)=1 \\
& 2 \mathrm{x}=1 \\
& \mathrm{x}=1 / 2 \\
& \text { Re-write equation } 2 . \\
& \text { Then, combine with equation } 1 \text {. } \\
& \text { 4) } x=5 \\
& y=6 \\
& \text { place } y=0 \text { into the second } \\
& \text { equation to get } x \\
& \text { intersection at }(1 / 2,0) \\
& \text { - }
\end{aligned}
$$

Graph it first, and you'll see the solution!
The lines intersect at $(5,6)$

SOLUTIONS

1) Jim bought 65 cupcakes and cookies for his birthday party. Each cupcake cost $\$ 1$ and each cookies cost 75 cents. If he paid $\$ 57.50$ for the treats, how many of each did he buy?

$$
\begin{aligned}
& \text { Let } \mathrm{CP}=\text { number of cupcakes } \\
& \quad \mathrm{CK}=\text { number of cookies } \\
& \quad \mathrm{CP}+\mathrm{CK}=65 \\
& \$ 1(\mathrm{CP})+\$.75(\mathrm{CK})=\$ 57.50
\end{aligned}
$$

Using substitution method:

$$
\mathrm{CP}=65-\mathrm{CK}
$$

then,

$$
\begin{aligned}
\$ 1(65-\mathrm{CK})+\$.75(\mathrm{CK}) & =\$ 57.50 \\
65-1 \mathrm{CK}+.75 \mathrm{CK} & =57.50 \\
-.25 \mathrm{CK} & =-7.50 \\
\mathrm{CK} & =30
\end{aligned}
$$

30 cookies 35 cupcakes
and, $\mathrm{CP}=35$
quick check: 30 cookies will cost $\$ 22.50$; and, 35 cupcakes will cost $\$ 35.00$; total: $\$ 57.50$ V
2) A high school play has 2 freshmen, 5 sophomores, and 11 juniors. If $1 / 3$ of the cast is composed of seniors, how many seniors are in the play?

$$
\begin{array}{ll}
2+5+11=18 \text { non seniors } & \mathrm{S}=\# \text { of seniors } \\
\mathrm{C}=\# \text { of cast members }
\end{array}
$$

seniors + non seniors $=$ total cast

$$
\begin{aligned}
& S+18=C \\
& 1 / 3(C)=S
\end{aligned}
$$

$$
\begin{aligned}
1 / 3(\mathrm{C})+18 & =\mathrm{C} \\
2 / 3 \mathrm{C} & =18 \\
2 \mathrm{C} & =54 \\
\mathrm{C} & =27
\end{aligned}
$$

3) A movie theater charges 9 dollars for adults, 5 dollars for kids, and 3 dollars for seniors.

Last month, the theater sold 9,500 tickets and generated $\$ 57,920$.
If the theater sold twice as many tickets to kids as seniors, how many of each ticket did the theater sell?

Using substitution:
$A+(2 S)+S=9500 \quad$ 3rd equation into 1st equation
$9 \mathrm{~A}+5(2 \mathrm{~S})+3 \mathrm{~S}=579203$ rd equation into 2 nd equation

Then, combine these two equations:
$\left\{\begin{aligned} \mathrm{A}+3 \mathrm{~S} & =9500 \\ 9 \mathrm{~A}+13 \mathrm{~S} & =57,920 \\ -9 \mathrm{~A}-27 \mathrm{~S} & =-85,500 \\ \hline-14 \mathrm{~S} & =-27,580 \\ \mathrm{~S} & =1970\end{aligned}\right.$

$$
\begin{aligned}
\text { Since } K & =2 S, \\
K & =2(1970) \\
K & =3940
\end{aligned}
$$

$$
\begin{aligned}
& \text { And, since } \\
& \begin{array}{l}
A+K+S=9500 \\
A+3940+1970=9500
\end{array}
\end{aligned}
$$

Quick Check:

$$
3590+3940+1970=9500
$$

Seniors: 1970 twice as many kids
Kids $: 3940$
$\$ 9 \times 3590$ tix $=\$ 32,310$
$\$ 5 \times 3940$ tix $=\$ 19,700$
total sales: $\$ 57,920$
$\$ 3 \times 1970$ tix $=\$ 5,910$

$$
\mathrm{A}=3590
$$

4) A bartender wants to make 81 ounces of a 20% cranberry drink mix. How much pure cranberry juice should he mix with a 10% cranberry blend?

Method 2: System of linear equations

Let $\mathrm{X}=$ amount of 10% blend $Y=$ amount of pure cranberry
first equation: amounts $X+Y=81$
second equation: concentration of cranberry

$$
.10 \mathrm{X}+1.00(\mathrm{Y})=.20(81)
$$

Then, solve...

$$
\begin{aligned}
X+Y & =81 \\
.10 X+Y & =16.2
\end{aligned}
$$

Elimination method

$$
\begin{gathered}
\mathrm{X}+\mathrm{Y}=81 \\
-.10 \mathrm{X}+\mathrm{Y}=16.2 \\
\hline .90 \mathrm{X}=64.8 \\
\mathrm{X}=72 \quad \text { then, } \mathrm{Y}=9
\end{gathered}
$$

5) Solve the following linear system:

1	$9 x+9 y+4 z=-56$
2	$-4 x-4 y+z=11$
3	$x+y+z=-9$

$$
\begin{array}{lr}
\begin{array}{l}
\text { multiply row } 2 \text { by }-1 \\
\text { and add to row } 3
\end{array} & \begin{array}{r}
-4 x-4 y+z=11 \\
x+y+z
\end{array} \\
\\
\text { multiply row } 3 \text { by }-4 \\
\text { and add to row 1 } & 9 x+9 y+4 z=-56 \\
& x+y+z=-9
\end{array}
$$

combined 2 nd and 3rd rows:

$$
5 x+5 y=-20
$$

The result is 2 identical lines.. ----> dependent system....

Using the combined equation $5 x+5 y=-20$

$$
\begin{aligned}
\mathrm{x}+\mathrm{y} & =-4 \\
\mathrm{y} & =-\mathrm{x}-4
\end{aligned}
$$

Then, using the 3rd equation $x+y+z=-9$

$$
\begin{aligned}
& z=-9-x-y \\
& z=-9-x-(-x-4) \\
& z=-5
\end{aligned}
$$

[^0]

(Burp...)

Another Practice Test \rightarrow

Linear Systems Test 2

Part I: Solving Systems

Use Substitution (and show your work)
1)
$y=3 x+10$
$2 x+3 y=-3$
2) $y=2 x-4$
$3 x-y=9$

Use Elimination (Combination) Method (and show your work)
3) $3 x+7 y=1$
$6 x-5 y=-17$
4) $x+3 y=6$
$3 x-y=-12$

Use Any Method
5) $y=4$
$3 x+5 y=8$
6) $\frac{2}{3} x-y=4$ $y=2 x-12$
7) $y=-3 x+10$
$3 x+y=15$

Part II: Graphing

Graph the following: $\quad 3 x+5 y=15$
What is the x-intercept?

> y-intercept? slope?

Is $(20,-8)$ a point on this line?

Part III: Graph and Solve

Graph each system. Then, identify the solutions on the graphs.
$3 x+2 y=15$
$y=2 x+4$
$y<2 x+4$
$2 x-y \leq 4$
$\mathrm{y} \leq 3 \mathrm{x}+5$
$6 x+2 y>-6$
$y=-5$
$x-6 y=13$

Part IV: Word Problems
Solve the Linear Systems. (Label the variables and show your work.)

1) A movie theater charges $\$ 2.50$ for kids and $\$ 4.00$ for adults. Last Friday, 260 people attended the show. If the theater collected $\$ 782$, how many of the viewers were adults?
2) At the movie, Lance wants to buy popcorn and candy for himself and four friends.

Popcorn cost $\$ 2$ and Candy cost $\$ 1$.
If he wants to spend less than $\$ 20$ and needs to get at least one treat per person, graph a system that describes all the possible combinations of popcorn and candy he can buy.
3) There is a cafe next to the movie theater. The daily costs for the cafe are $\$ 200$ plus $\$ 2$ per order. If each customer pays $\$ 5$ per order, how many daily customers does the cafe need to make a profit?
(Show your solutions algebraically AND graphically)

Part V: Miscellaneous Concepts

1) Describe the linear system and solve.
$l:$
m :
$(\mathrm{x}, \mathrm{y})=$?

2) Describe the system:

3) Graph and write the linear equation (in standard form):

The x -intercept is $(8,0)$
y -intercept is $(0,5)$

Part I: Solving Systems

Use Substitution (and show your work)

$\begin{gathered} y=3 x+10 \\ 2 x+3 y=-3 \end{gathered}$		
(substitute y into 2nd equation)	$\begin{aligned} & 2 x+3(3 x+10)=-3 \\ & 2 x+9 x+30=-3 \\ & 11 x=-33 \\ & \quad x=-3 \end{aligned}$	$(-3,1)$
(put x into 1st equation)	$\begin{gathered} y=3(-3)+10 \\ y=1 \end{gathered}$	
(check solution!)	$\begin{gathered} 2(-3)+3(1)=-3 \\ -6+3=-3 \\ -3=-3 \end{gathered}$	

2) $\begin{aligned} & y=2 x-4 \\ & 3 x-y=9\end{aligned}$
$(5,6)$

(substitute y into	
2nd equation)	$3 \mathrm{x}-(2 \mathrm{x}-4)=9$ $3 \mathrm{x}-2 \mathrm{x}+4=9$ $\mathrm{x}=5$
(put x into 2nd	
equation)	$3(5)-\mathrm{y}=9$ $15-\mathrm{y}=9$ $\mathrm{y}=6$

(check solutions)

Use Elimination (Combination) Method (and show your work)
3) $\quad \begin{aligned} 3 x+7 y & =1 \\ 6 x-5 y & =-17\end{aligned}$
4) $x+3 y=6$
$3 x-y=-12$
(multiply top by -2) $-6 x-14 y=-2$
(combine equations) $\quad-6 x-14 y=-2$

$$
\begin{gathered}
6 x-5 y=-17 \\
\hline-19 y=-19 \\
y=1
\end{gathered}
$$

(multiply bottom by 3) $9 x-3 y=-36$
(combine equations) $x+3 y=6$

$$
\begin{equation*}
\frac{9 x-3 y=-36}{10 x=-30} \tag{-3,3}
\end{equation*}
$$

$$
x=-3
$$

(plug x into top equation)

$$
\begin{array}{r}
(-3)+3 y=6 \\
3 y=9 \\
y=3
\end{array}
$$

(check bottom equation) $3(-3)-(3)=-12$
$-9-3=-12$
$-12=-12$

Use Any Method
6) $\begin{aligned} & \frac{2}{3} \mathrm{x}-\mathrm{y}=4 \\ & \mathrm{y}=2 \mathrm{x}-12\end{aligned}$
(rewrite top equation) $y=\frac{2}{3} x-4$
$\begin{aligned} & \text { (set equations equal to } \\ & \text { each other/substituting y) }\end{aligned} \frac{2}{3} x-4=2 x-12$
$8=\frac{4}{3} x$
$x=6$
(plug x into top) $\begin{aligned} \frac{2}{3}(6)-\mathrm{y} & =4 \quad(6,0) \\ 4-\mathrm{y} & =4 \\ \mathrm{y} & =0\end{aligned}$
7) $y=-3 x+10$
$3 x+y=15$
(rewrite bottom equation)

$$
y=-3 x+15
$$

(compare equations!)

$$
\begin{aligned}
& y=-3 x+15 \\
& y=-3 x+10
\end{aligned}
$$

Same slope, different intercepts! Parallel lines

NO SOLUTION

Part II: Graphing

$$
\begin{gathered}
3(20)+5(-8)=15 \\
60-40=15 \\
20 \neq 15
\end{gathered}
$$

Part III: Graph and Solve

Solutions

Graph each system. Then, identify the solutions on the graphs.

$$
\begin{aligned}
& 3 x+2 y=15 \\
& y=2 x+4
\end{aligned}
$$

Use substitution method to verify solution:

$$
\begin{align*}
3 \mathrm{x}+2(2 \mathrm{x}+4) & =15 \\
3 \mathrm{x}+4 \mathrm{x}+8 & =15 \\
7 \mathrm{x} & =7 \tag{1,6}\\
\mathrm{x} & =1 \\
3(1)+2 \mathrm{y} & =15 \\
3+2 \mathrm{y} & =15 \\
2 \mathrm{y} & =12
\end{align*}
$$

$$
\begin{aligned}
& y<2 x+4 \\
& 2 x-y \leq 4
\end{aligned}
$$

Notice, these are parallel lines!
draw the line $y=2 x+4$
since it is $<$, it is a slashed line..
then, test $(0,0)$
(0) $<2(0)+4$
$0<4$ yes.
Region below the line that includes $(0,0)$ is shaded! Then,
draw line $2 x-y=4$
or $\mathrm{y}=2 \mathrm{x}-4$
since it is \leq, it is a solid line.
then, test $(0,0)$
$2(0)-(0) \leq 4$ yes.
Region above the line that includes $(0,0)$ is shaded..

$$
\begin{aligned}
& y \leq 3 x+5 \\
& 6 x+2 y>-6
\end{aligned}
$$

First, graph the top equation by identifying the y-intercept and x-intercept. Then, draw a line that goes through both. (since it is \leq, the line is solid) then, test $(0,0)$ $0 \leq 0+5$ yes! The area under the line may be shaded.

Then, graph the second equation by drawing line through intercepts. Then, the line is dashed (because it is $>$)
Test $(0,0)$:

$$
\begin{aligned}
6(0)+2(0) & >-6 \\
0 & >-6 \text { yes... Area above the dashed line may be shaded. }
\end{aligned}
$$

$$
\begin{aligned}
& y=-5 \quad \text { (horizontal line) } \\
& x-6 y=13
\end{aligned}
$$

$$
\begin{aligned}
x-6(-5) & =13 \\
x+30 & =13 \\
x & =-17
\end{aligned}
$$

Part IV: Word Problems

Solutions

Solve the Linear Systems. (Label the variables and show your work.)

1) A movie theater charges $\$ 2.50$ for kids and $\$ 4.00$ for adults. Last Friday, 260 people attended the show. If the theater collected $\$ 782$, how many of the viewers were adults?

Let K	$=\#$ of kids		$\$ 2.5$ per kid
A	$=\#$ of adults	$\$ 4.0$ per adult	

$\$ 2.5 \mathrm{~K}+\$ 4.0 \mathrm{~A}=\$ 782$
or
$2.5 \mathrm{~K}+4 \mathrm{~A}=782$
Use elimination method to find A and K : (Check Solution)
$A+K=260$

$$
\begin{gathered}
2.5 \mathrm{~K}+4 \mathrm{~A}=782 \\
-\quad 4 \mathrm{~K}+4 \mathrm{~A}=1040 \\
\hline-1.5 \mathrm{~K}=-258 \\
\mathrm{~K}=172
\end{gathered}
$$

$$
\begin{aligned}
\mathrm{A}+172 & =260 \\
\mathrm{~A} & =88
\end{aligned}
$$

$\$ 2.50 \times 172=\$ 430$
$\$ 4.00 \times 88=\$ 352$
$\$ 782$ total!
** Now, answer the question: How many viewers were adults? 88
2) At the movie, Lance wants to buy popcorn and candy for himself and four friends.

Popcorn cost $\$ 2$ and Candy cost $\$ 1$.
If he wants to spend less than $\$ 20$ and needs to get at least one treat per person, graph a system that describes all the possible combinations of popcorn and candy he can buy.

Let $\mathrm{P}=\#$ of Popcorn
$C=\#$ of Candy
Price of candy $=\$ 1$
Price of popcorn $=\$ 2$
$\$ 1 \mathrm{C}+\$ 2 \mathrm{P}<\$ 20 \quad$ (cost constraint)
$\mathrm{P}+\mathrm{C} \geq 5 \quad$ (quantity constraint)

Any combination of popcorn and candy in the gray region would satisfy the cost constraint $(<\$ 20)$ and satisfy the quantity constraint (everyone gets at least one treat).

3) There is a cafe next to the movie theater. The daily costs for the cafe are $\$ 200$ plus $\$ 2$ per order. If each customer pays $\$ 5$ per order, how many daily customers does the cafe need to make a profit?
(Show your solutions algebraically AND graphically)

Let $\mathrm{X}=$ \# of customers
Cafe Costs $=\$ 200+\$ 2 \mathrm{X}$
Cafe Revenues $=\$ 5 \mathrm{X}$

Let's find where revenue > cost...
$C(x)=200+2 x$
$R(x)=5 x$
Where does revenue $=$ cost?

$$
\begin{aligned}
5 \mathrm{x} & =200+2 \mathrm{x} \\
3 \mathrm{x} & =200 \\
\mathrm{x} & =66.6
\end{aligned}
$$

Part V: Miscellaneous Concepts

Solutions

1) Describe the linear system and solve.

$l:$| |
| :--- |
| |
| |
| |

m : slope is $6 / 3=2$
so line in point slope form is:

$$
(y-2)=2(x-2)
$$

$$
\begin{array}{cc}
(\mathrm{x}, \mathrm{y})=? & l \text { and } m \\
\left(\frac{5}{2}, 3\right) & \text { intersect at }(3-2)=2(\mathrm{x}-2) \\
1=2 \mathrm{x}-4 \\
\mathrm{x}=5 / 2
\end{array}
$$

2) Describe the system:

$$
\begin{aligned}
& x<4 \\
& y \leq x+3 \\
& y \geq-x+5
\end{aligned}
$$

3) Graph and write the linear equation (in standard form):

The x -intercept is $(8,0)$
y-intercept is $(0,5)$
find slope:

$$
m=\frac{5-0}{0-8}=\frac{-5}{8}
$$

$$
y-0=\frac{-5}{8}(x-8)
$$

$$
y=\frac{-5}{8} x+5
$$

$$
8 y=-5 x+40
$$

$$
5 x+8 y=40
$$

$$
\begin{aligned}
& \text { Graph } x+y \leq 2 \\
& \text { Graph } x+y \geq-2
\end{aligned}
$$

The intersection is the solution..

Example: Graph $|\mathrm{x}|+|\mathrm{y}|<3$

Graph all 4 possibilities...

$x+y<3$

$(-x)+y<3$

$x+(-y)<3$

$(-\mathrm{x})+(-\mathrm{y})<3$

NOTE: To check answer, test points in each region..
$(0,0): \quad|0|+|0|<3 \quad$
$(5,0): \quad|5|+|0|<3 \quad X$
$(-1,-1):|-1|+|-1|<3 \quad$
$(-3,4):|-3|+|4|<3 \quad X$

Thanks for visiting. (Hope it helps!)

If you have questions, suggestions, or requests, let us know.

Good luck!

Also, at TeachersPayTeachers
And, Mathplane Express for mobile at Mathplane.ORG

One more question:
Can you graph this linear system?

$$
\begin{aligned}
& y<2 x+4 \\
& x+3 y=5
\end{aligned}
$$

Solution on next page- \rightarrow

Graph the following system: $\quad y<2 x+4$

$$
x+3 y=5
$$

$$
y<2 x+4
$$

The solution set must satisfy both equations!

The solution set is $x+3 y=5$ on the interval $(-1, \infty)$

[^0]: Therefore, the solution (in terms of x) is $(x,-x-4,-5)$

