## Geometry Review 003

(With solutions)


Topics include triangle properties, vertical angles, quadrilaterals, right triangles, parallel lines, restrictions, and more.

## Triangle Properties: Restrictions

Example: What are the restrictions of x ?

$$
m \angle \mathrm{~A}>m \angle \mathrm{~B}
$$

Since $\angle \mathrm{A}>\angle \mathrm{B}$,

$$
\overline{\mathrm{BC}}>\overline{\mathrm{AC}}
$$

$$
\begin{aligned}
(18-x) & >(3 x+30) \\
-12 & >4 x \\
x & <-3
\end{aligned}
$$



Also, since a side cannot be less than or equal to zero,

| $\overline{\mathrm{BC}}$ | $18-\mathrm{x}>0$ | $\mathrm{x}<18$ |
| :--- | :--- | :--- |
| $\overline{\mathrm{AC}}$ | $3 \mathrm{x}+30>0$ | $\mathrm{x}>-10$ |

Therefore, the restrictions for x are $-10<\mathrm{x}<-3$

Example: If the perimeter is less than 45 , which side is the base?

$\triangle$ STV is an isosceles triangle

If 10 is the base: $\quad x+7=2 x-8$
$\mathrm{x}=15$
therefore, the legs are 22
(If the legs are 22 , then the perimeter exceeds 45 )

If $2 x-8$ is the base: $x+7=10$

$$
x=3
$$

Therefore, the legs are 10 and the base is -2
(a segment cannot be negative!)


$$
\text { If } x+7 \text { is the base: } \begin{aligned}
2 x-8 & =10 \\
x & =9
\end{aligned}
$$

Therefore, the legs are 10 and the base is 16


The base is $\overline{\mathrm{TV}}=16$

1) Find $x, y$, and $z$

$$
\begin{aligned}
& \mathrm{m} \angle \mathrm{x}= \\
& \mathrm{m} \angle \mathrm{y}= \\
& \mathrm{m} \angle \mathrm{z}=
\end{aligned}
$$


2) Given: $\angle \mathrm{CAB}=80^{\circ}$
$\angle \mathrm{CBA}=60^{\circ}$
$\overline{\mathrm{AE}}$ and $\overline{\mathrm{BD}}$ are altitudes

Find: $\mathrm{m} \angle \mathrm{C}$ and $\mathrm{m} \angle \mathrm{AFB}$

3) Given: Right triangle $A B C$ inscribed in a circle

$$
\begin{aligned}
& \angle \mathrm{ABP}=4 \mathrm{x}+\mathrm{y} \\
& \angle \mathrm{PBC}=6 \mathrm{x}+8 \\
& \angle \mathrm{APB}=18 \mathrm{y}+100 \\
& \angle \mathrm{BPC}=5 \mathrm{x}+4
\end{aligned}
$$

Find: $\angle \mathrm{ABP}$

4) Find $x$ and $\angle A B C$

5) Given: $\angle 1=\angle 5$

$$
\begin{aligned}
& \overline{\mathrm{AB}} \| \overline{\mathrm{CD}} \\
& \angle 2=38^{\circ}
\end{aligned}
$$

Find: $\angle 3$

6) Given: Rectangle RSTV

$$
\begin{aligned}
& \angle \mathrm{RVS}=\mathrm{x}^{2}+30^{\circ} \\
& \angle \mathrm{RSV}=6 \mathrm{x}-12^{\circ}
\end{aligned}
$$

Find the measure of $\angle \mathrm{VST}$


## Geometry Angle and Triangle Exercises

7) Given: 45-45-90 Right Triangle Hypotenuse length: 25

Find the perimeter.
8) Find the perimeter of $\triangle \mathrm{ABC}$


Geometry Angle and Triangle Exercises
9) What are the restrictions of x ?

10) What are the restrictions of $y$ ?



If angles 1 and 3 are supplementary, what is the measure of angle 2 ?
12)

13)

angle $\mathrm{A}=$ $\qquad$
angle $B=$ $\qquad$
14) In $\triangle D E F$, the sum of $\angle D$ and $\angle E$ is $110^{\circ}$ and the sum of $\angle \mathrm{E}$ and $\angle \mathrm{F}$ is $150^{\circ}$

What is the sum of $\angle \mathrm{D}$ and $\angle \mathrm{F}$ ?



The Math Guy misunderstood the Architect's suggestion...

Building
Materials


## SOLUTIONS

## Geometry Angle and Triangle Exercises

1) Find $x, y$, and $z$

$$
\begin{aligned}
& \mathrm{m} \angle \mathrm{x}=20^{\circ} \\
& \mathrm{m} \angle \mathrm{y}=45^{\circ} \\
& \mathrm{m} \angle \mathrm{z}=115^{\circ}
\end{aligned}
$$

Examine each triangle separately
(Interior angles of a triangle add up to 180)

2) Given: $\angle \mathrm{CAB}=80^{\circ}$
$\angle \mathrm{CBA}=60^{\circ}$
$\overline{\mathrm{AE}}$ and $\overline{\mathrm{BD}}$ are altitudes

Find: $\mathrm{m} \angle \mathrm{C}$ and $\mathrm{m} \angle \mathrm{AFB}$
(Label the given angles)


Since $\angle \mathrm{C}=40$ and $\angle \mathrm{D}=90$, $\angle \mathrm{CBD}=50$

If $\begin{aligned} & \angle \mathrm{CBD}=50 \text { and } \angle \mathrm{CBA}=60 \text {, } \\ & \angle \mathrm{DBA}=10\end{aligned}$


Since $\angle \mathrm{C}=40$ and $\angle \mathrm{E}=90$,
$\angle \mathrm{CAE}=50$
And, if $\angle \mathrm{CAE}=50$ and $\angle \mathrm{CAB}=80$,
then $\angle \mathrm{EAB}=30$
$\angle \mathrm{CAE}=50$
And, if $\angle \mathrm{CAE}=50$ and $\angle \mathrm{CAB}=80$,
then $\angle \mathrm{EAB}=30$

$$
\text { then } \angle \mathrm{EAB}=30
$$



Finally, looking at $\angle \mathrm{AFB}, \mathrm{A}=30, \mathrm{~B}=10$; therefore, $\angle \mathrm{AFB}=140^{\circ}$
3) Given: Right triangle $A B C$ inscribed in a circle

$$
\begin{aligned}
& \angle \mathrm{ABP}=4 \mathrm{x}+\mathrm{y} \\
& \angle \mathrm{PBC}=6 \mathrm{x}+8 \\
& \angle \mathrm{APB}=18 \mathrm{y}+100 \\
& \angle \mathrm{BPC}=5 \mathrm{x}+4
\end{aligned}
$$

Find: $\angle \mathrm{ABP}$

ABP and PBC are complementary angles:

$$
\begin{gathered}
(4 x+y)+(6 x+8)=90 \\
10 x+y=82
\end{gathered}
$$

APB and BPC are supplementary angles:

$$
\begin{gathered}
(18 y+100)+(5 x+4)=180 \\
5 x+18 y=76
\end{gathered}
$$



Since we have 2 equations and 2 unknowns, we can find x and y (using elimination method)

$$
\begin{aligned}
10 x+y & =82 \\
-10 x-36 y & =-152 \\
-35 y & =-70 \\
y & =2
\end{aligned}
$$

$$
\begin{aligned}
10 \mathrm{x}+(2) & =82 \\
\mathrm{x} & =8
\end{aligned}
$$

Since $\mathrm{x}=8$ and $\mathrm{y}=2$, the measure of $\angle \mathrm{ABP}=4(8)+(2)=34^{\circ}$
4) Find $x$ and $\angle A B C$
$\mathrm{x}=9$
$\angle \mathrm{ABC}=126^{\circ}$

Since vertical angles are congruent,


$$
\begin{aligned}
4 \mathrm{x}+18 & =7 \mathrm{x}-9 \\
27 & =3 \mathrm{x} \\
\mathrm{x} & =9
\end{aligned}
$$

Since $x=9$, then

$$
\angle \mathrm{EBA}=\angle \mathrm{DBC}=54^{\circ}
$$

And, since $\angle \mathrm{ABC}$ is supplementary to either angle, then

$$
\angle \mathrm{ABC}=126^{\circ}
$$

## SOLUTIONS

5) Given: $\angle 1=\angle 5$
$\overline{\mathrm{AB}} \| \overline{\mathrm{CD}}$

$$
\angle 2=38^{\circ}
$$

Find: $\angle 3$

Interior angles of triangle add up to $180 \ldots$
Since $\angle 2=38$, then $\angle 1+\angle 5=142 \ldots$
And, since they are congruent, each is 71
Since $A B \| C D, \angle 1 \cong \angle 4$
because of corresponding angles
Therefore, $\angle 4=71^{\circ}$


$$
\begin{aligned}
& \overline{\mathrm{AE}} \text { is a straight angle, so the sum of } \\
& \text { angles } 2,3 \text {, and } 4 \text { is } 180 . . \\
& \text { Therefore, } 38+\angle 3+71=180 \\
& \qquad \angle 3=71^{\circ}
\end{aligned}
$$

6) Given: Rectangle RSTV

$$
\begin{aligned}
& \angle \mathrm{RVS}=\mathrm{x}^{2}+30^{\circ} \\
& \angle \mathrm{RSV}=6 \mathrm{x}-12^{\circ}
\end{aligned}
$$

## Find the measure of $\angle \mathrm{VST}$

Since RSTV is a rectangle, $\angle \mathrm{VRS}=90^{\circ}$

then, $\angle \mathrm{RSV}+\angle \mathrm{RVS}=90^{\circ}$

$$
\begin{gathered}
6 x-12+x^{2}+30=90 \\
x^{2}+6 x-72=0 \\
(x+12)(x-6)=0 \\
x=-12,6
\end{gathered}
$$

$$
\begin{aligned}
& \text { If } \mathrm{x}=-12 \text {, then RVS }=174 \quad \text { RSV }=-84 \\
& \text { EXTRANEOUS!! }
\end{aligned}
$$

$$
\text { If } x=6 \text {, then } \mathrm{RVS}=66 \quad \text { RSV }=24
$$

Since $\angle \mathrm{RSV}=24$, then $\angle \mathrm{VST}=66$

## SOLUTIONS

7) Given: 45-45-90 Right Triangle Hypotenuse length: 25

Find the perimeter.
Ratio of sides of 45-45-90 right triangle:

$$
1: 1: / \sqrt{2}
$$

$$
\text { Perimeter }=25+\frac{25 \sqrt{2}}{2}+\frac{25 \sqrt{2}}{2}
$$

$$
\begin{aligned}
& \frac{25}{\mathrm{x}}=\frac{\sqrt{2}}{1} \\
& \sqrt{2} \mathrm{x}=25 \\
& \mathrm{x}=\frac{25}{\sqrt{2}}=\frac{25 \sqrt{2}}{2}
\end{aligned}
$$

$$
=25+\frac{50 \sqrt{2}}{2}
$$

$$
=25+25 \sqrt{2}
$$

8) Find the perimeter of $\triangle \mathrm{ABC}$

Use geometry theorems and concepts to find sides until we know $\overline{\mathrm{AB}}, \overline{\mathrm{BC}}$, and $\overline{\mathrm{AC}}$..

Pythagorean theorem... $12^{2}+16^{2}=20^{2}$
(also, special 3-4-5 right triangle x 4 ---> 12-16-20)


Triangle ratios:


$$
\begin{array}{ll}
\frac{20}{12}=\frac{16}{\mathrm{X}} & 20 \mathrm{X}=12(16) \\
\frac{20}{12}=\frac{12}{\mathrm{Y}} & 20 \mathrm{Y}=12(12)
\end{array}
$$

Since $\overline{\mathrm{BD}}=7.2$ and $\overline{\mathrm{AD}}=20$,

$$
\overline{\mathrm{AB}}=12.8
$$



$$
\mathrm{X}=9.6
$$

$$
\overline{\mathrm{BC}}=9.6
$$

$$
\mathrm{Y}=7.2
$$

Therefore, the perimeter of $\triangle \mathrm{ABC}$
$16+9.6+12.8=38.4$

## Geometry Angle and Triangle Exercises

9) What are the restrictions of $x$ ?


$$
15<x<66 . \overline{6}
$$

10) What are the restrictions of $y$ ?

y is exterior angle of $\triangle \mathrm{KLP}$.

$$
\text { So, } y>79^{\circ}
$$

Then, y is interior angle of $\triangle \mathrm{KPM}$.
So, $y+34<180$

$$
\mathrm{y}<146^{\circ}
$$

$$
79<y<146
$$


and,

11)


Geometry Angle and Triangle Exercises
If angles 1 and 3 are supplementary, what is the measure of angle 2 ?

Since 1 and 3 are supp AND
1 and 3 are congruent (vertical angles),
they must be right angles (right angle theorem)
therefore, angle 2 is 90 degrees

SOLUTIONS

Note: the diagram is not drawn to scale...
12)


| $\mathrm{BDE}+\mathrm{EDF}=180$ |  |
| :--- | :--- |
| $\mathrm{EDF}=180-(\mathrm{BDE})$ |  |
| $\mathrm{EDF}=180-(2 \mathrm{x}+40)=140-2 \mathrm{x}$ |  |
| $\mathrm{ABC}=\mathrm{EDF}$ | $\mathrm{If} \mathrm{x}=10$, then |
| $\mathrm{x}^{2}+2 \mathrm{x}=140-2 \mathrm{x}$ | $\mathrm{ABC}=120$ |
| $\mathrm{x}^{2}+4 \mathrm{x}-140=0$ | $\mathrm{BDE}=60$ |
| $(\mathrm{x}+14)(\mathrm{x}-10)=0$ | $\mathrm{If} \mathrm{x}=-14$, then |
| $\mathrm{x}=10,-14$ | $\mathrm{ABC}=168$ |
|  | $\mathrm{BDE}=12$ |

13) 


angle $\mathrm{A}=\underline{98}$
angle $\mathrm{B}=139$

$$
\begin{aligned}
3 x+3 y+57 & =180 \\
3 x+3 y & =123 \\
x+y & =41
\end{aligned}
$$

$A+2 x+2 y=180$
$A+82=180$
$A=98$
$B+x+y=180$
$B+41=180$
$B=139$
$\mathrm{AR}, \mathrm{BR}, \mathrm{AI}$, and BI are angle trisectors.
14)
$\triangle \mathrm{DEF}$, the sum of $\angle \mathrm{D}$ and $\angle \mathrm{E}$ is $110^{\circ}$ and the sum of $\angle \mathrm{E}$ and $\angle \mathrm{F}$ is $150^{\circ}$

What is the sum of $\angle \mathrm{D}$ and $\angle \mathrm{F}$ ?
The sum of the interior angles of a triangle is 180 degrees.

If $\mathrm{D}+\mathrm{E}=110$, then angle F must be 70
and, if $E+F=150$, then angle $D$ must be 30
therefore, $\mathrm{D}+\mathrm{F}=30+70=100$

Thanks for visiting. (Hope it helped!)
Find other Geometry exercises and more at mathplane.com
And, follow comics and updates at Facebook or Google +

www.mathplane.com

One more question....


Can you find $x$ and $y$ ? (Answer on next page)


Method 1: Using the bisectors...
Since the main triangle is a right triangle, the bisected 60 degree angle produces two 30 degree angles...

since the left triangle is isosceles, the other side is $3 \ldots$.

since the triangle on the right is $30-60-90$, the small side is 1.5 and the medium side $(\mathrm{y})$ is $1.5 / \sqrt{3}$

since the large right triangle has side $1.5 \sqrt{3}$ across from the 30 degree angle, the hypotenuse is 2 x

$$
\xrightarrow{\sim} 3 \sqrt{3}
$$

Method 2: Using the angle bisector theorem

$\frac{\mathrm{y}}{\mathrm{x}}=\frac{\mathrm{d}}{3}$ angle bisector theorem
since large triangle is $30-60-90$ right triangle, length of small side $(y)$ is $1 / 2$ the length of hypotenuse (x)..

$$
2 \mathrm{y}=\mathrm{x}
$$

therefore,

$$
\frac{\mathrm{y}}{2 \mathrm{y}}=\frac{\mathrm{d}}{3}
$$

$$
\text { so, } d=1.5
$$



If side opposite of 60 degree angle is 4.5 , then small side is

$$
\frac{4.5}{\sqrt{3}}=1.5 \sqrt{3} \quad y
$$

and hypotenuse is $\frac{4.5}{\sqrt{3}} \times 2=3 \sqrt{3} \times$

