Geometry:
 Equidistance Theorem

Notes, Examples, and Practice Test (with Solutions)

Topics include perpendicular bisector, 2-column proofs, kite, isosceles triangle, circles, congruent triangles, and more...

Equidistance Theorem

Definition: If two points are each equidistant from the endpoints of a segment, then the two points determine the perpendicular bisector of the segment.

Illustration 1:

D is equidistant to A and B
F is equidistant to A and B
Therefore, a line through D and F would create the \perp bisector of $\overline{\mathrm{AB}}$

Illustration 2:
(Kite and its diagonals)

Q is equidistant from A and B
R is equidistant from A and B
Therefore, QR is the \perp bisector of $\overline{\mathrm{AB}}$

Illustration 3:
(Isosceles Triangle and its median from vertex to base)

C is equidistant to A and B M is equidistant to A and B

Therefore, CM is the \perp bisector of AB

CM is an altitude of $\triangle \mathrm{ABC}$

Converse of Perpendicular Bisector Theorem: If a point lies on the perpendicular bisector, then it is equidistant

 from the endpoints of the bisected segment.Example:
Given: $\frac{\overline{\mathrm{AB}}=\overline{\mathrm{AD}}}{\mathrm{CB}}=\overline{\mathrm{CD}}$
Prove: $\overline{\mathrm{BE}}=\overline{\mathrm{DE}}$

Statements	Reasons
$\overline{\mathrm{AC}} \perp$ bisector of $\overline{\mathrm{BD}} \overline{\mathrm{AB}}=\overline{\mathrm{AD}}$	Given
$\overline{\mathrm{BE}}=\overline{\mathrm{DE}}$	Perpendicular Bisector theorem
Converse of perpendicular bisector theorem (if point lies on \perp bisector, then it is equidistant from endpoints of bisected segment)	

(if point lies on \perp bisector, endpoints of bisected segment)

Question: If $\overline{\mathrm{RL}}$ is the perpendicular bisector of $\overline{\mathrm{KA}}$, which segments are congruent?

Answer: Bisected segment is $\overline{\mathrm{KA}}$, so any pair of segments from endpoints A and K that meet on $\overline{R L}$ would be congruent!!

construct perpendicular bisector.....

1) pick endpoints on line segment...
\qquad
2) from each endpoint, using a compass, construct arcs above and below...

3) draw line segment through the arc intersections!

Observation: The arcs create 2 points that are equidistant from the endpoints...

Equidistance Theorem:
If two points are equidistant from the endpoints of a segment, then the two points determine the perpendicular bisector of the segment.

Prove: $\overline{\mathrm{PO}} \perp \overline{\mathrm{AE}}$

Statements	Reasons

1. Regular Pentagon PENTA
2. Auxilary lines $\overline{\mathrm{AO}}$ and $\overline{\mathrm{EO}}$
3. $\overline{\mathrm{AT}} \cong \overline{\mathrm{EN}}$
4. $\angle \mathrm{T} \stackrel{N}{=} \angle \mathrm{N}$
5. O is the midpoint of $\overline{\mathrm{TN}}$
6. $\overline{\mathrm{TO}} \cong \overline{\mathrm{NO}}$
7. $\triangle \mathrm{ATO} \xlongequal{\cong} \triangle \mathrm{ENO}$
8. $\overline{\mathrm{AO}} \stackrel{\cong}{=} \overline{\mathrm{EO}}$
9. $\overline{\mathrm{AP}} \stackrel{(f}{=} \overline{\mathrm{EP}}$
10. $\overline{\mathrm{PO}}$ is \perp bisector of $\overline{\mathrm{AE}}$
11. Given
12. A line segment connects 2 points
13. Definition of a regular pentagon (all sides congruent)
14. Definition of regular pentagon (all angles are congruent)
15. Given
16. Definition of midpoint (a midpoint divides a segment into equal halves)
17. SAS (Side-Angle-Side) $3,4,6$
18. CPCTC (Corresponding Parts of Congruent Triangles are Congruent)
19. Definition of regular pentagon (all sides are congruent)
20. Equidistance Theorem
(If 2 points are equidistance from the endpoints of a segment, then those 2 points can form the perpendicular bisector of the segment)

\ll

Note: A key to utilizing the equidistance theorem is to identify the "anchor points"

Since $\overline{\mathrm{PO}}$ is the perpendicular bisector, the anchor points are A and E...

Then, find points that are equidistant to A and $\mathrm{E} \ldots$

Example: Which line segment is a perpendicular bisector?

a) $\overline{\mathrm{BD}}$
b) $\overline{\mathrm{AC}}$
c) $\overline{\mathrm{BC}}$
d) $\overline{\mathrm{AD}}$
e) none of the above

B and D are the endpoints... ("anchors")
A is equidistance to B and D
C is equidistance to B and D
therefore, $\overline{\mathrm{AC}}$ is a perpendicular bisector...

For many proofs, the equidistance theorem is a nice shortcut.
Example: Given: $\overline{\mathrm{WZ}}$ is perpendicular bisector of $\overline{\mathrm{XY}}$
Prove: $\triangle \mathrm{XWY}$ is an isosceles triangle

Approach 1:

Statements	Reasons
1. $\overline{\mathrm{WZ}} \perp$ bisector of $\overline{X Y}$	1. Given
2. $\angle \mathrm{WZX}$ and $\angle \mathrm{WZY}$ are right angles	2. Definition of perpendicular
3. $\angle W Z X \cong \angle W Z Y$ 4. $\overline{W Z}=\overline{W Z}$	3. All right angles are congruent 4. Reflexive Property
5. $\overline{\mathrm{XZ}} \cong \overline{\mathrm{YZ}}$	5. Definition of Bisector
6. $\triangle \mathrm{XZW} \stackrel{ }{=} \stackrel{\mathrm{N}}{=} \triangle \mathrm{YZW}$	6. Side-Angle-Side ($4,3,5$)
7. $\mathrm{WX}=\mathrm{WY}$	7. CPCTC
8. $\triangle \mathrm{XWY}$ is isosceles	8. Definition of isosceles (two sides of triangle are congruent)

Approach 2: Three steps!

Statements	Reasons
1. WZ \perp bisector of XY	1. Given
2. WY $\xlongequal{\sim} \mathrm{WX}$	2. If point lies on perpendicular

3. $\triangle \mathrm{XWY}$ is isosceles
4. Definition of isosceles (two sides of triangle are congruent)

And, for other proofs, the Equidistance Theorem is an alternative.

Example: Given: $\overline{\mathrm{AM}}$ is a median

$$
\overline{\mathrm{AB}} \cong \widehat{\mathrm{AC}}
$$

Prove: $\triangle \mathrm{AMB}=\triangle \mathrm{AMC}$

Approach 1:

Statements	Reasons
1. $\overline{\mathrm{AM}}$ is a median	1. Given 2. $\overline{\mathrm{BM}} \cong \overline{\mathrm{CM}}$
2. Definition of Median (and midpoint)	
3. $\overline{\mathrm{AB}} \cong \overline{\mathrm{AC}}$	3. Given 4. $\overline{\mathrm{AM}} \cong \overline{\mathrm{AC}}$
4. Reflexive property	
5. $\triangle \mathrm{AMB} \cong \triangle \mathrm{AMC}$	5. SSS (Side-Side-Side)
$(2,3,4)$	

Approach 2:

Statements	Reasons
1. $\overline{\mathrm{AM}}$ is a median	1. Given
2. $\overline{\mathrm{BM}} \cong \underline{=} \overline{\mathrm{CM}}$	2. Definition of Median (and midpoint)
3. $\overline{\mathrm{AB}} \xlongequal{=} \overline{\mathrm{AC}}$	3. Given
4. $\overline{\mathrm{AM}}$ is \perp bisector	4. Equidistance theorem
5. $\angle \mathrm{AMB}$ and $\angle \mathrm{AMC}$ are right angles	5. Definition of perpendicular
6. $\angle \mathrm{AMB} \cong \angle \mathrm{AMC}$	6. All right angles are congruent
7. $\triangle \mathrm{AMB} \cong \cong \triangle \mathrm{AMC}$	7. HL (Hypotenuse-Leg) (6, 3, 2)

Example: Given: $\overline{\mathrm{AM}}$ is a median
$\overline{\mathrm{AB}} \cong \overline{\mathrm{AC}}$
Prove: $\overline{\mathrm{BK}} \cong \overline{\mathrm{CK}}$

Statements	Reasons
1. $\overline{\mathrm{AM}}$ is a median	1. Given
2. M is midpoint of $\overline{\mathrm{BC}}$	2. Definition of median
3. $\overline{\mathrm{BM}} \cong \overline{\mathrm{CM}}$	3. Definition of midpoint
4. $\overline{\mathrm{AB}} \cong \overline{\mathrm{AC}}$	4. Given

5. $\overline{\mathrm{AM}}$ is perpendicular bisector of $\overline{\mathrm{BC}}$
6. $\overline{\mathrm{BK}} \cong \overline{\mathrm{CK}}$

7. Equidistance theorem (if 2 points are equidistant from the same endpoints of a segment, then the 2 points form a perpendicular bisector of the segment)
8. (converse) Equidistance theorem (if a point lies on the \perp bisector, then it is equidistant from the endpoints of the bisected segment)

Example: Given: 2 intersecting circles with a segment $\overline{\mathrm{KM}}$ connecting the points of intersection.
Prove: The segment joining the centers from each circle bisects $\overline{\mathrm{KM}}$.
Draw a diagram:

2 column proof:

Statements	Reasons
1. Intersecting circles	
with centers O and P	1. Given (diagram)
2. Draw auxilary lines	2. A line segment connects

2. Draw auxilary lines (radii) $\overline{\mathrm{KP}}, \overline{\mathrm{PM}}, \overline{\mathrm{KO}}, \overline{\mathrm{MO}}$

3. $\overline{\mathrm{KO}}=\overline{\mathrm{MO}}$
4. $\overline{\mathrm{KP}}=\overline{\mathrm{MP}}$
5. $\overline{\mathrm{OP}}$ is perpendicular bisector of $\overline{\mathrm{KM}}$
6. OP bisects $\overline{\mathrm{KM}}$ two points
7. All radii of a circle are congruent
8. All radii of a circle are congruent
9. Equidistance Theorem (if 2 pts . are equidistant from endpoints of a segment, the 2 pts. form \perp bisector of segment)
10. def. of \perp bisector

Given: $\overline{\mathrm{PI}} \perp$ bisector of $\overline{\mathrm{MD}}$
$\overline{\mathrm{PI}} \perp$ bisector of $\overline{\mathrm{YA}}$
Prove: $\overline{\mathrm{MY}}=\overline{\mathrm{AD}}$

Given: $\overline{\mathrm{PI}} \perp$ bisector of $\overline{\mathrm{MD}}$
$\overline{\mathrm{PI}} \perp$ bisector of $\overline{\mathrm{YA}}$
Prove: $\overline{\mathrm{MY}}=\overline{\mathrm{AD}}$

[^0]| Statements | Reasons |
| :--- | :--- |
| 1) $\overline{\mathrm{PI}} \perp$ bisector of $\overline{\mathrm{YA}}$ | 1) Given |
| 2) $\overline{\mathrm{PY}}=\overline{\mathrm{PA}}$ | 2) Equidistance Theorem (Converse) |

(If a point lies on a perpendicular bisector, then it is equidistant to the endpoints of the segment)
3) $\overline{\mathrm{PI}} \perp$ bisector of $\overline{\mathrm{MD}}$
4) $\overline{\mathrm{PM}}=\overline{\mathrm{PD}}$
5) $\overline{\mathrm{MY}}=\overline{\mathrm{AD}}$
3) Given
4) Equidistance Theorem (Converse)
5) Subtraction Property
(If 2 congruent segments are subtracted from congruent segments, then the differences are the same)

Example: Given: $\angle \mathrm{CTR}=\angle \mathrm{KER}$

$$
\overline{\mathrm{TA}}=\overline{\mathrm{EA}}
$$

Prove: $\quad \overline{\mathrm{TR}}=\overline{\mathrm{ER}}$

Uses Supplementary Angles
Equidistance Theorem
(Converse) Equidistance Theorem

Statements	Reasons
1) $\angle \mathrm{CTR}=\angle \mathrm{KER}$	1) Given
2)STR and CTR are supplementary angles	2) Definition of Supplementary If (adjacent) angles form a straight angle, then angles are supplementary

KER and SER are supplementary angles
3) $\angle \mathrm{SER}=\angle \mathrm{STR}$
4) $\overline{\mathrm{ST}}=\overline{\mathrm{SE}}$
5) $\overline{\mathrm{TA}}=\overline{\mathrm{EA}}$
6) $\overline{\mathrm{SR}}$ is perpendicular bisector of $\overline{\mathrm{TE}}$
7) $\mathrm{TR}=\mathrm{ER}$

Uses Indirect Proof
Method of Contradiction
Example: Given: Circle R
$\overline{\mathrm{QR}}$ is not a perpendicular bisector
Prove: $\overline{\mathrm{SQ}} \neq \overline{\mathrm{UQ}}$

Statements	Reasons
1) Circle R	1) Given
2) QR is not \perp bisector	2) Given
3) $\overline{\mathrm{SQ}} \cong \overline{\mathrm{UQ}}$	3) Assume to reach a contradiction
4) $\overline{\mathrm{RS}} \stackrel{N}{=} \overline{\mathrm{RU}}$	4) All radii are congruent
5) QR is perpendicular bisector	5) Equidistance Theorem of segment SU
(If 2 points are equidistant to endpoints of	
a segment, then the points form a perpendicular	
bisector of the segment)	

However, statements 2) and 5) contradict each other...
Proof by contradiction...

Practice Test: Proofs and Applications

1) Given: $\overline{\mathrm{BD}}$ is the base of isosceles triangles ABD and CBD

Prove: $\overline{\mathrm{BE}} \cong \overline{\mathrm{ED}}$

2) Prove the median of an equilateral triangle is also the altitude.

Statements	Reasons

3) Given: $\overline{\mathrm{PT}} \cong \overline{\mathrm{PS}}$; Circle O

Prove: $\overline{\mathrm{TR}} \cong \overline{\mathrm{SR}}$

Statements	Reasons

4) Given: $\triangle \mathrm{ABC}$ is isosceles with $\overline{\mathrm{AC}} \cong \overline{\mathrm{AB}} ; \mathrm{E}$ is midpoint of $\overline{\mathrm{BC}}$ Prove: $\overline{\mathrm{AE}} \perp \overline{\mathrm{BC}}$

Write 2 proofs: 1 utilizing the Equidistance Theorem, and 1 without the Equistance Theorem.

Statements	Reasons

Statements	Reasons

5) $\overline{\mathrm{DC}}$ is the perpendicular bisector of $\overline{\mathrm{AB}}$.

Which segments are congruent?

6) Given: $\overline{\mathrm{TS}}$ is a perpendicular bisector of $\overline{\mathrm{RJ}}$

Prove: $\triangle T R K=\triangle T J K$

7) Given: Circle $\mathrm{O} ; \angle \mathrm{B} \xlongequal{\cong} \angle \mathrm{C}$

Prove: $\overline{\mathrm{AO}}$ bisects $\overline{\mathrm{BC}}$

8) Given: G is the midpoint of $\overline{R V}$
$\overline{\mathrm{TG}} \perp \overline{\mathrm{RX}}$ and $\overline{\mathrm{WG}} \perp \overline{\mathrm{VX}}$ $\overline{\mathrm{TR}} \xlongequal{=} \mathrm{WV}$
Prove: $\mathrm{XG} \perp \mathrm{RV}$

Statements	Reasons

9) $\overline{\mathrm{AT}}$ is the perpendicular bisector of $\overline{\mathrm{BC}}$.

What is the perimeter of $\triangle \mathrm{ABC}$?

SOLUTIONS

1) Given: $\overline{\mathrm{BD}}$ is the base of isosceles triangles ABD and CBD
Prove: $\overline{\mathrm{BE}} \cong \overline{\mathrm{ED}}$

Statements	Reasons
1. ABD and CBD are isosceles $\triangle s$	1. Given
2. $\overline{\mathrm{BA}} \equiv \overline{\mathrm{DA}}$	2. Definition of Isosceles
3. $\overline{\mathrm{BC}} \stackrel{\sim}{=} \mathrm{DC}$	3. Definition of Isosceles
4. $\overline{\mathrm{AC}}$ is \perp bisector of $\overline{\mathrm{BD}}$	4. Equidistance Theorem
5. $\overline{\mathrm{BE}} \cong \overline{\mathrm{ED}}$	5. Definition of Bisector

B and C are the endpoints of the segment
equidistance pair 1: BA and CA
equidistance pair 2: BM and CM
Therefore, AM is the perpendicular bisector
2) Prove the median of an equilateral triangle is also the altitude.

Statements	Reasons
1. $\triangle \mathrm{ABC}$ is equilateral	1. Given (diagram)
2. $\overline{\mathrm{AB}} \cong \overline{\mathrm{AC}}$	2. Definition of equilateral (all sides congruent)
3. $\overline{\mathrm{AM}}$ is median	3. Given (diagram)
4. M bisects $\overline{\mathrm{BC}}$	4. Definition of median (segment from vertex
to midpoint of opposite side)	

5. $\overline{\mathrm{BM}}=\overline{\mathrm{MC}}$
6. $\overline{\mathrm{AM}}$ is perpendicular bisector of $\overline{\mathrm{BC}}$
7. $\overline{\mathrm{AM}}$ is altitude
8. Definition of midpoint
9. Equidistant theorem (if 2 pts . are each equidistant to the endpoints of a segment, then the 2 pts . determine the perpendicular bisector of the segment)
10. Definition of altitude (segment from vertex that is perpendicular to opposite side)
3) Given: $\overline{\mathrm{PT}} \cong \overline{\mathrm{PS}}$; Circle O

Prove: $\overline{\mathrm{TR}} \cong \overline{\mathrm{SR}}$

Statements	Reasons
1. $\overline{\mathrm{PT}}=\overline{\mathrm{PS}}$	1. Given 2. $\overline{\mathrm{TO}}$ and $\overline{\mathrm{OS}}$ are auxilary line segments
2. Line segment connects two points	
3. $\overline{\mathrm{TO}}=\overline{\mathrm{OS}}$	3. All radii are congruent 4. $\overline{\mathrm{PO}}$ is \perp bisector
4. Equidistance Theorem	

5. $\overline{\mathrm{TR}}=\overline{\mathrm{RS}}$
4) Given: $\triangle \mathrm{ABC}$ is isosceles
with $\overline{\mathrm{AC}} \cong \overline{\mathrm{AB}} ; \mathrm{E}$ is midpoint of $\overline{\mathrm{BC}}$
Prove: $\overline{\mathrm{AE}} \perp \overline{\mathrm{BC}}$

Statements	Reasons
1. $\overline{\mathrm{AC}} \cong \overline{\mathrm{AB}}$	1. Given
2. E is midpoint	2. Given
3. $\overline{\mathrm{BE}} \approx \overline{\mathrm{EC}}$	3. definition of midpoint
4. $\overline{\mathrm{AE}}$ is \perp	4. Perpendicular Bisector (heorem
bisector of $\overline{\mathrm{BC}}$ The 5. $\overline{\mathrm{AE}} \perp \overline{\mathrm{BC}}$5. Def. of \perp bisector	

Statements	Reasons
$1 . \overline{\mathrm{AC}} \cong \overline{\mathrm{AB}}$	1. Given
2. E is midpoint	2. Given 3. $\overline{\mathrm{BE}} \cong \overline{\mathrm{EC}}$
3. definition of midpoint 4. $\overline{\mathrm{AE}} \cong \overline{\mathrm{AE}}$ 4. reflexive property 5. $\triangle \mathrm{AEB}=\triangle \mathrm{AEC}$ 5. Side-Side-Side $(4,3,1)$ 6. $\angle \mathrm{AEB}=\angle \mathrm{AEC}$ 6. CPCTC 7. $\angle \mathrm{AEB}$ and $\angle \mathrm{AEC}$ 7. Right angle theorem are right angles (if 2 angles are both supplementary and congruent, then they are right) 8. $\mathrm{AE} \perp \mathrm{BC}$ 8. Definition of perpendicular	

5) $\overline{\mathrm{DC}}$ is the perpendicular bisector of $\overline{\mathrm{AB}}$.

Which segments are congruent?

6) Given: $\overline{\mathrm{TS}}$ is a perpendicular bisector of $\overline{\mathrm{RJ}}$ Prove: $\triangle T R K=\triangle T J K$

7) Given: Circle $\mathrm{O} ; \angle \mathrm{B} \xlongequal{\cong} \angle \mathrm{C}$

Prove: $\overline{\mathrm{AO}}$ bisects $\overline{\mathrm{BC}}$

Although $\overline{\mathrm{AB}}$ appears to bisect $\overline{\mathrm{CD}}$,
$\overline{\mathrm{DC}}$ bisects $\overline{\mathrm{AB}}$!!
therefore, $\overline{\mathrm{MB}} \cong \overline{\mathrm{MA}}$
also, every point on perpendicular bisector is equidistant to endpoints A and B .
therefore, $\overline{\mathrm{CB}} \stackrel{\cong}{=} \overline{\mathrm{CA}} \quad \overline{\mathrm{DB}} \cong \overline{\mathrm{DA}}$

Statements	Reasons
1. $\overline{\mathrm{TS}}$ is \perp bisector of $\overline{\mathrm{RJ}}$	1. Given
2. $\overline{\overline{\mathrm{RK}} \cong \overline{\mathrm{RT}} \cong \overline{\mathrm{JK}}} \overline{\mathrm{JT}}$	2. Equidistance Theorem (If point lies on \perp bisector, then it is equidistant from endpoints of bisected segment)
3. $\mathrm{TK}=\mathrm{TK}$	3. Reflexive property
4. $\triangle \mathrm{TRK}=\triangle \mathrm{TJK}$	4. Side-Side-Side (SSS) $(2,2,3)$

Statements	Reasons
1. $\angle \mathrm{B} \cong \angle \mathrm{C}$	1. Given
2. Circle with center O 3. Auxilary line segments $\overline{\mathrm{OB}}$ and $\overline{\mathrm{OC}}$	2. Given (diagram) 3. line segment joins 2 points
4. $\overline{\mathrm{OB}} \cong \overline{\mathrm{OC}}$	4. All radii are congruent
5. $\overline{\mathrm{AB}} \cong \overline{\mathrm{AC}}$	5. If congruent angles, then congruent sides
6. $\overline{\mathrm{AO}} \perp$ bisector of $\overline{\mathrm{BC}}$	6. Equidistance theorem 7. $\overline{\mathrm{AO}}$ bisects $\overline{\mathrm{BC}}$
7. Definition of perpendicular bisector	

8) Given: G is the midpoint of $\overline{\mathrm{RV}}$
$\overline{\mathrm{TG}} \perp \overline{\mathrm{RX}}$ and $\overline{\mathrm{WG}} \perp \overline{\mathrm{VX}}$ $\overline{\mathrm{TR}} \xlongequal{=} \overline{\mathrm{WV}}$
Prove: $\mathrm{XG} \perp \mathrm{RV}$

9) $\overline{\mathrm{AT}}$ is the perpendicular bisector of $\overline{\mathrm{BC}}$.

What is the perimeter of $\triangle \mathrm{ABC}$?

Statements	Reasons
1. G is midpt. of $\overline{\mathrm{RV}}$	1. Given
2. $\overline{\mathrm{RG}}=\overline{\mathrm{VG}}$	2. Definition of midpoint
3. $\mathrm{TG} \perp \mathrm{RX}$	3. Given
$W G \perp v X$ 4. $\angle \mathrm{GTR} \& \angle \mathrm{GWV}$ are right angles	4. Definition of perpendicular
5. $\angle \mathrm{GTR} \cong \angle \mathrm{GWV}$ 6. $\overline{\mathrm{TR}} \cong \overline{\mathrm{WV}}$	5. All right angles are congruent 6. Given
7. $\triangle \mathrm{GTR}=\triangle \mathrm{GWV}$	7. Hypotenuse Leg (HL) (4, 2, 6)
8. $\angle \mathrm{R} \xlongequal{=} \angle \mathrm{V}$	8. CPCTC (corresponding parts of congruent triangles are congruent)
9. $\overline{R X}=\overline{V X}$	9. If congruent angles, then congruent sides
10. $\overline{\mathrm{XG}} \perp$ bisector $\overline{\mathrm{RV}}$	10. Equidistance Theorem
11. $\overline{\mathrm{XG}} \perp \overline{\mathrm{RV}}$	11. Definition of perpendicular bisector

Since $\overline{\mathrm{AT}}$ is \perp bisector of $\overline{\mathrm{BC}}$,
$\overline{\mathrm{AC}} \cong \overline{\mathrm{AB}}$ and $\overline{\mathrm{TC}} \cong \overline{\mathrm{TB}}$

$$
\begin{gathered}
3 y+11=2 x-5 \\
\text { and } \\
28-x=2 y-1
\end{gathered}\left\{\begin{aligned}
2 x-3 y=16 \\
x+2 y=29
\end{aligned} \quad \begin{array}{l}
\text { system with 2 equations } \\
\text { and } 2 \text { unknowns }
\end{array}\right.
$$

Since $x=17$ and $y=6$,

$$
\mathrm{AB}=29 \quad \mathrm{AC}=29 \quad \mathrm{BT}=11 \text { and } \mathrm{TC}=11
$$

Perimeter of triangle $\mathrm{ABC}=80$

Thanks for visiting. (Hope it helped!)
If you have questions, suggestions, or requests, let us know.
Cheers, LAF

One more question: Prove the diagonals of a kite are perpendicular.

Statements	Reasons
1. Kite ABCD	1. Given (diagram) 2. $\overline{\mathrm{AB}} \cong \overline{\mathrm{AD}}$ $\overline{\mathrm{CB}} \cong \overline{\mathrm{CD}}$
2. Definition of Kite (2 pairs of adjacent sides are congruent)	
3. $\overline{\mathrm{AC}}$ is perpendicular bisector of $\overline{\mathrm{DB}}$	3. Equidistance Theorem (if 2 points are equidistant from the endpoints of a segment, then the 2 points determine the perpendicular bisector of the segment)
4) $\mathrm{AC} \perp \mathrm{DB}$	4. Definition of perpendicular bisector

An alternative:

Statements	Reasons
1. Kite ABCD 1. Given (diagram) 2. $\overline{\mathrm{AB}} \cong \overline{\mathrm{AD}}$ $\overline{\mathrm{CB}} \cong \overline{\mathrm{CD}}$	2. Definition of Kite (2 pairs of adjacent sides are congruent) 3. $\mathrm{AC}=\mathrm{AC}$
3. Reflexive property	
4. $\triangle \mathrm{DAC}=\triangle \mathrm{BAC}$ 4. Side-Side-Side (SSS) $(2,2,3)$ 6. $\overline{\mathrm{AM}} \xlongequal{=} \overline{\mathrm{AM}}$ 5. CPCTC 7. $\triangle \mathrm{AMD} \cong \triangle \mathrm{BAC}$ 6. Reflexive property 8. $\angle \mathrm{AMD} \cong \angle \mathrm{AMB}$ 7. Side-Angle-Side (SAS) $\quad(2,5,6)$	

9. $\angle \mathrm{AMD} \& \angle \mathrm{AMB}$ are right angles
10. $\mathrm{AC} \perp \mathrm{DB}$
11. Definition of Kite
(2 pairs of adjacent sides are congruent)
12. Reflexive property
13. Side-Side-Side (SSS) $(2,2,3)$
14. CPCTC
15. Reflexive property
16. Side-Angle-Side (SAS) $(2,5,6)$
17. CPCTC
18. If angles are supplementary and congruent, then they are right angles
19. If right angles, then segments are perpendicular

Eventually, Noah realizes that this assignment
was NOT a geometry construction

[^0]: Using Equidistance Theorem...

