Detour and Diagramless Proofs

Topics include right angle theorem, indirect proofs, isosceles triangles, quadrilaterals, and more.

Example: Given: $\overline{\mathrm{AB}} \perp \overline{\mathrm{BD}}$

$$
\begin{aligned}
& \overline{\mathrm{AC}} \perp \overline{\mathrm{CD}} \\
& \overline{\mathrm{AB}} \cong \overline{\mathrm{AC}}
\end{aligned}
$$

Prove: $\angle \mathrm{BED}$ is a right angle

C

Detour
4. $\overline{\mathrm{AD}} \cong \overline{\mathrm{AD}}$
5. $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$
6. $\overline{\mathrm{CD}} \cong \overline{\mathrm{BD}}$
7. $\lfloor\mathrm{BDE} \cong \angle \mathrm{CDE}$
8. $\overline{\mathrm{ED}} \cong \overline{\mathrm{ED}}$
9. $\triangle \mathrm{BED} \cong \triangle \mathrm{CED}$
10. $\angle \mathrm{CED}=\angle \mathrm{BED}$
11. $\angle \mathrm{BED}$ is right angle

Reasons

1. Given
2. Definition of perpendicular (Perpendicular segments form right angles)
3. Given
4. Reflexive property
5. RHL (Right Angle-Hypotenuse-Leg) 2, 4, 3
6. CPCTC (Corresponding Parts of Congruent Triangles are Congruent)
7. CPCTC
8. Reflexive property
9. SAS (Side-Angle- Side) $6,7,8$
10. CPCTC
11. Right Angle Theorem
(If angles are both congruent and supplementary, then each angle is a right angle)

Draw a diagram... Devise a proof (using "if... , then....")

Given: $\overline{\mathrm{BD}}$ and $\overline{\mathrm{CE}}$ are altitudes

$$
\overline{\mathrm{BD}}=\overline{\mathrm{CE}}
$$

Prove: $\triangle \mathrm{ACD}$ is isosceles

Method 1:

Statements	Reasons

1) $\overline{\mathrm{BD}}=\overline{\mathrm{CE}}$
2) $\overline{\mathrm{BD}}$ and $\overline{\mathrm{CE}}$ are altitudes
3) $\angle \mathrm{CBD}$ and $\angle \mathrm{DEC}$ are right angles
4) $\angle \mathrm{CBD}=\angle \mathrm{DEC}$
5) $\overline{\mathrm{CD}}=\overline{\mathrm{CD}}$
6) $\triangle \mathrm{BCD}=\triangle \mathrm{EDC}$
7) $\lfloor\mathrm{BCD}=\lfloor\mathrm{EDC}$
8) $\triangle \mathrm{ACD}$ is isosceles
9) Given
10) Given
11) Definition of Altitude
12) All right angles are congruent
13) Reflexive Property
14) $\mathrm{RHL}(4,5,1)$ (Right Angle-Hypotenuse-Leg)
15) CPCTC (Corresponding Parts of Congruent Triangles are Congruent)
16) If base angles of triangle are congruent, then triangle is isosceles

Method 2:

Step 1: Draw a diagram (go phrase by phrase)

Step 2: Devise a proof....
"IF" -----> the 'givens'

Given: $\overline{\mathrm{AM}}$ bisects $\angle \mathrm{BAC}$ M is the midpoint of $\overline{\mathrm{BC}}$
"THEN" -----> what you're proving
Prove: $\triangle \mathrm{ABC}$ is isosceles

| Statements | Reasons |
| :--- | :--- | :--- |
| 1. $\overline{\mathrm{AM}}$ bisects $\angle \mathrm{BAC}$ | 1. Given |
| 2. M is the midpoint of $\overline{\mathrm{BC}}$ | 2. Given |
| 3. $\mathrm{TM} \perp \mathrm{AB}$ | 3. Auxilary lines join 2 points |

$M V \perp A C$
4. AVM and ATM rt angles
5. ATM and AVM congruent
6. $\angle \mathrm{MAC}=\angle \mathrm{MAB}$
7. $\overline{\mathrm{AM}}=\overline{\mathrm{AM}}$
8. $\triangle \mathrm{MAT}=\triangle \mathrm{MAV}$
9. $\mathrm{MV}=\mathrm{MT}$
10. BTM and CVM are congruent right angles
11. $\mathrm{BM}=\mathrm{CM}$
12. $\triangle \mathrm{CVM}=\triangle \mathrm{BTM}$
13. angles B and C are congruent
14. $\mathrm{AB}=\mathrm{AC}$
15. ABC is isosceles
3. Auxilary lines join 2 points
4. Definition of perpendicular
5. All right angles are congruent
6. Definition of angle bisector
7. Reflexive property
8. AAS (angle-angle-side) $5,6,7$
9. CPCTC
10. Def. of perpendicular, all right angles are congruent
11. Definition of midpoint
12. RHL (right angle-hypotenuse-leg) 10, 11, 9
13. CPCTC
14. If congruent angles, then congruent sides
15. Def. of isosceles (at least 2 congruent sides)

1) If a triangle is isosceles, then the triangle formed by its base and the angle bisectors of its base angles is also isosceles.

Statements	Reasons

2) Prove a trapezoid inscribed in a circle is isosceles.
3) Given: $\overline{\mathrm{AB}}=\overline{\mathrm{DE}}$

$$
\overline{\mathrm{BC}}=\overline{\mathrm{CD}}
$$

Prove: $\triangle \mathrm{AFE}$ is isosceles

Statements	Reasons

4) Given: $\angle \mathrm{WNI}=\angle \mathrm{ABL}$

D is the midpoint of $\overline{\mathrm{BN}}$
$\overline{\mathrm{ID}}=\overline{\mathrm{LD}}$
Prove: $\overline{\mathrm{WN}}=\overline{\mathrm{AB}}$

Statements	Reasons

6) Given: $\overline{\mathrm{SR}}=\overline{\mathrm{SK}}$
$\overline{\mathrm{RE}}=\overline{\mathrm{KE}}$

$$
\overline{\mathrm{TR}}=\overline{\mathrm{AK}}
$$

Prove: E is the midpoint of $\overline{\mathrm{TA}}$

Statements	Reasons

8) "In an isosceles triangle, if a point on the base is NOT the midpoint, then the segment from the vertex to that point does NOT bisect the vertex angle."
9) Given: S is midpoint of $\overline{\mathrm{CP}}$

$$
\begin{aligned}
& \overline{\mathrm{AC}}=\overline{\mathrm{AP}} \\
& \angle \mathrm{PAM}=\angle \mathrm{CAH}
\end{aligned}
$$

Prove: $\mathrm{SA} \perp \mathrm{HM}$

10) Given: $\overline{\mathrm{KS}}$ bisects $\lfloor\mathrm{BSE}$
$\overline{\mathrm{AK}}$ bisects $\angle \mathrm{BKE}$

Prove: $\overline{\mathrm{KR}}$ bisects $\angle \mathrm{BRE}$

Given: Triangle ABC is isosceles

Statements	Reasons
1) $\triangle \mathrm{ABC}$ is isosceles	1) Given
2) $\overline{\mathrm{AB}} \cong \overline{\mathrm{AC}}$	2) Definition of Isosceles
3) $\angle \mathrm{ABC} \cong \sim \mathrm{ACB}$	3) If congruent sides, then congruent angles (or, base angles of isos. are congruent)
4) $\overline{\mathrm{BD}}$ and $\overline{\mathrm{CD}}$ are angle bisectors	4) Given
5) $\angle \mathrm{DBC} \xlongequal{\cong} \mathrm{DDCB}$	5) "Like Division Property" If congruent angles are bisected, then the halves are congruent
6) $\mathrm{BD}=\mathrm{CD}$	6) If congruent angles (in a triangle), then opposite sides congruent
7) $\triangle \mathrm{BDC}$ is isosceles	7) Definition of isosceles (A triangle with 2 or more congruent sides)

2) Prove a trapezoid inscribed in a circle is isosceles.

Statements	Reasons	
1) Trapezoid $A B C D$	1) Given	
2) $A B \\| C D$	2)Definition of Trapezoid (bases are parallel)	
3) Draw Diagonal AC	3) Given (definition of trapezoid)	

4) $\angle \mathrm{ACD} \cong \angle \mathrm{BAC}$
5) $\widehat{\mathrm{AD}}=\overparen{\mathrm{BC}}$
6) $\mathrm{AD}=\mathrm{BC}$
7) ABCD is isosceles

BD and CD are angle bisectors
Prove: Triangle BDC is isosceles
SOLUTIONS
3) Given: $\overline{\mathrm{AB}}=\overline{\mathrm{DE}}$

Detour Proofs
$\overline{\mathrm{BC}}=\overline{\mathrm{CD}}$
Prove: $\triangle \mathrm{AFE}$ is isosceles

SOLUTIONS

	Statements	Reasons
Detour	1) $\overline{\mathrm{AB}}=\widetilde{\mathrm{DE}}$	1) Given
	2) $\mathrm{BC}=\overline{\mathrm{CD}}$	2) Given
	3) $\overline{\mathrm{AC}}=\overline{\mathrm{EC}}$	3) Addition Property (If congruent sides are added to congruent sides, then the sums are equal)
	4) $\angle \mathrm{ACD}=\angle \mathrm{ECB}$	4) Reflexive Property
	5) $\triangle \mathrm{ACD}=\triangle \mathrm{ECB}$	5) Side-Angle-Side ($2,4,3)$
\square	6) $\angle \mathrm{BEC}=\angle \mathrm{DAC}$	6) CPCTC (Corresponding Parts of Congruent Triangles Congruent)
	7) $\angle \mathrm{BFA}=\angle \mathrm{DFE}$	7) Vertical angles congruent
	8) $\triangle \mathrm{FAB}=\triangle \mathrm{FED}$	8) Angle-Angle-Side ($6,7,1$)
	9) $\mathrm{AF}=\mathrm{EF}$	9) CPCTC
	10) $\triangle \mathrm{AFE}$ is isosceles	10) Definition of Isosceles (At least 2 congruent sides)

4) Given: $\angle \mathrm{WNI}=\angle \mathrm{ABL}$
D is the midpoint of $\overline{\mathrm{BN}} \overline{\mathrm{I}}$
$\overline{\mathrm{ID}}=\overline{\mathrm{LD}}$
Prove: $\overline{\mathrm{WN}}=\overline{\mathrm{AB}}$

NOTE: there are other methods that could prove..
(i.e. proving $\triangle \mathrm{ABL}=\triangle \mathrm{WNI}$ would lead to answer)

Given: Rectangle RECT
Prove: $\overline{\mathrm{RC}}$ and $\overline{\mathrm{ET}}$ bisect each other (creating isosceles triangles)

"If rectangle, then diagonals create an isosceles triangle..."

Statements	Reasons
1. Rectangle RECT	1. Given
2. $\angle \mathrm{T}$ and $\angle \mathrm{C}$ are right angles	2. Definition of rectangle
3. $\angle \mathrm{T} \cong \angle \mathrm{C}$	3. All right angles are congruent
4. $\overline{\mathrm{RT}} \stackrel{\mathrm{N}}{=} \overline{\mathrm{EC}}$	4. Definition of rectangle (opposite sides congruent)
5. $\overline{\mathrm{TC}}=\overline{\mathrm{TC}}$	5. Reflexive property
6. $\triangle \mathrm{RTC} \cong \cong$ (ECT	6. SAS (Side-Angle-Side) 4, 3, 5
7. \angle TRM $\xlongequal{=} \angle \mathrm{CEM}$	7. CPCTC (Corresponding Parts of Congruent Triangles are Congruent
8. $\angle \mathrm{RMT} \stackrel{\sim}{=} \angle \mathrm{EMC}$	8. Vertical angles congruent
9. $\triangle \mathrm{RMT}=\triangle \mathrm{EMC}$	9. AAS (Angle-Angle-Side) 7, 8, 4
10. $\overline{\mathrm{EM}} \xlongequal{\cong} \overline{\mathrm{RM}}$	10. CPCTC
$\overline{\mathrm{TM}} \xlongequal{\cong} \overline{\mathrm{CM}}$	
11. $\triangle \mathrm{RME}$ and $\triangle \mathrm{TMC}$ are isosceles triangles	11. Definition of isosceles triangle (2 or more congruent sides of a triangle are congruent)

6) Given: $\overline{\mathrm{SR}}=\overline{\mathrm{SK}}$
$\overline{\mathrm{RE}}=\overline{\mathrm{KE}}$
$\overline{\mathrm{TR}}=\overline{\mathrm{AK}}$

$$
\overline{\mathrm{TR}}=\overline{\mathrm{AK}}
$$

Prove: E is the midpoint of $\overline{\mathrm{TA}}$
Detour

$$
\overline{\mathrm{RE}}=\mathrm{KE}
$$

\longrightarrow

	Statements		Reasons
Detour	1) $\overline{\mathrm{SR}}=\overline{\mathrm{SK}}$		Given
	2) $\overline{\mathrm{RE}}=\overline{\mathrm{EK}}$	2)	Given
	3) $\overline{\mathrm{SE}}=\overline{\mathrm{SE}}$	3)	Reflexive Property
	4) $\triangle \mathrm{SER}=\triangle \mathrm{SEK}$	4)	Side-Side-Side ($1,2,3$)
\square	5) $\angle \mathrm{TSE}=\angle \mathrm{ASE}$	5)	CPCTC
	6) $\overline{\mathrm{TR}}=\overline{\mathrm{AK}}$	6)	Given
	7) $\overline{\mathrm{ST}}=\overline{\mathrm{SA}}$	7)	Subtraction Property (If congruent segments are subtracted from congruent segments, then the diff are the same)
	8) $\triangle \mathrm{TSE}=\triangle \mathrm{ASE}$	8)	Side-Angle-Side (7, 5, 3)
	9) $\overline{\mathrm{TE}}=\overline{\mathrm{AE}}$	9)	CPCTC
	10) E is midpoint of $\overline{\mathrm{TA}}$	10)	Definition of Midpoint (If point divides segment into congruent halves, then it is midpoint of segment)

Step 1: Sketch a diagram
Step 2: Design the proof

Given: Circle O
$\overline{\mathrm{LO}}$ is NOT perpendicular to $\overline{\mathrm{MP}}$
Prove: $\overline{\mathrm{LO}}$ does NOT bisect $\overline{\mathrm{MP}}$

Step 3: Use indirect proof to solve

Uses Equidistance Theorem
Auxilary Lines
Indirect Proof

Statements	Reasons

1) Circle O
2) $\overline{\mathrm{LO}}$ NOT perpendicular to $\overline{\mathrm{MP}}$
3) Draw radii $\overline{\mathrm{OP}}$ and $\overline{\mathrm{OM}}$
4) $\overline{\mathrm{OP}}=\overline{\mathrm{OM}}$
5) $\overline{\mathrm{LO}}$ bisects $\overline{\mathrm{MP}}$
6) $\overline{\mathrm{MD}}=\overline{\mathrm{PD}}$
7) $\overline{\mathrm{LO}}$ is perpendicular bisector of MP
8) Given
9) Given
10) Auxilary lines (line joins 2 points)
11) All radii congruent
12) Assume for contradiction
13) Definition of bisector (Bisector divides segment into congruent halves)
14) Equidistance Theorem

However, statements 2) and 7) contradict each other!
8) "In an isosceles triangle, if a point on the base is NOT the midpoint, then the segment from the vertex to that point does NOT bisect the vertex angle."

Step 1: Sketch diagram by picking out key phrases..

Step 2: Write out "givens" using IF statements...
And, write "prove" using THEN statements...

Given: Isosceles Triangle ABC
D is NOT a midpoint
Prove: AD is NOT an angle bisector

Statements	Reasons
1) $\triangle \mathrm{ABC}$ is isosceles	1) Given
2) $\overline{\mathrm{AB}}=\overline{\mathrm{AC}}$	2) Definition of Isosceles (2 or more congruent sides)
3) D is NOT a midpoint of $\overline{\mathrm{BC}}$	3) Given
4) $\overline{\mathrm{AD}}$ is angle bisector	4) Assume for contradiction
5) $\overline{\mathrm{AD}}=\overline{\mathrm{AD}}$	5) Reflexive Property
6) $\triangle \mathrm{ABD}=\triangle \mathrm{ACD}$	6) Side-Angle-Side (SAS) $(2,3,4)$
7) $\overline{\mathrm{BD}}=\overline{\mathrm{CD}}$	7) CPCTC (Corresponding parts of congruent triangles are

8) D is midpoint of $B C$
9) Definition of Midpoint (If point divides segment into congruent halves, then it is a midpoint)

However, statements 3) and 8) contradict each other!
9)

Given: S is midpoint of $\overline{\mathrm{CP}}$
$\overline{\mathrm{AC}}=\overline{\mathrm{AP}}$
$\angle \mathrm{PAM}=\angle \mathrm{CAH}$

SOLUTIONS
Uses Detour and Right Angle Theorem

Prove: $\mathrm{SA} \perp \mathrm{HM}$

10) Given: $\overline{\mathrm{KS}}$ bisects 〈BSE

	Statements	Reasons
	1) S is midpoint of CP	1) Given
	2) $\overline{C S}=P S$	2) Definition of Midpoint
	3) $\overline{\mathrm{AC}}=\overline{\mathrm{AP}}$	3) Given
Detour ---->	4) $\mathrm{SA}=\mathrm{SA}$	4) Reflexive Property
	5) $\triangle \mathrm{CAS}=\triangle \mathrm{PAS}$	5) Side-Side-Side ($2,3,4$)
	6) $\angle \mathrm{CAS}=\angle \mathrm{PAS}$	6) CPCTC
	7) $\angle \mathrm{PAM}=\angle \mathrm{CAH}$	7) Given
	8) $\angle \mathrm{SAM}=\angle \mathrm{SAH}$	8) Addition Property
	9) SAM and SAH are supplementary angles	9) Definition of Supplementary
	10) SAM and SAH are right angles	10) Right Angle Theorem If angles are congruent and supplementary, then they are right angles..
	11) $\mathrm{SA} \perp \mathrm{HM}$	11) If right angles, then segments are perpendicular

11) $\mathrm{SA} \perp \mathrm{HM}$
12) If right angles, then segments are
perpendicular

Given: $\begin{aligned} & \mathrm{KS} \text { bisects } \angle \mathrm{BSE} \\ & \overline{\mathrm{AK}} \text { bisects } \angle \mathrm{BKE}\end{aligned}$
Prove: $\overline{\mathrm{KR}}$ bisects $\angle \mathrm{BRE}$
detour

Statements	Reasons
1) $\overline{\mathrm{KS}}$ bisects $\bigwedge \mathrm{BSE}$	1) Given
2) $\angle \mathrm{BSK}=\angle \mathrm{ESK}$	2) Definition of angle bisector
3) $\overline{\mathrm{KS}}=\overline{\mathrm{KS}}$	3) Reflexive Property
4) $\overline{\mathrm{AK}}$ bisects $\angle \mathrm{BKE}$	4) Given
5) $\angle \mathrm{AKB}=\angle \mathrm{AKE}$	5) Definition of angle bisector
6) \lfloor AKB is supplementary to $\angle \mathrm{BKS}$	6) Definition of Supplementary (Adjacent angles that form a straight angle are supplementary)
7) $\angle \mathrm{BKS}=\angle \mathrm{EKS}$	7) If 2 angles are congruent, then their supplements are congruent
8) $\triangle \mathrm{BSK}=\triangle \mathrm{ESK}$	8) Angle-Side-Angle ($2,3,7$)
9) $\mathrm{BS}=\mathrm{SE}$	9) CPCTC
10) $\mathrm{RS}=\mathrm{RS}$	10) Reflexive Property
11) $\triangle \mathrm{SBR}=\triangle \mathrm{SER}$	11) Side-Angle-Side ($9,2,10$)
12) $\angle \mathrm{BRK}=\angle \mathrm{ERK}$	12) CPCTC
13) KR bisects BRE	13) Definition of Angle Bisector

Thanks for visiting. Hope it helps!
If you have questions, suggestions, or requests, let us know.
Cheers

Also, at Mathplane Express for mobile and tablets at Mathplane.ORG

