Composite Functions Topics

Practice Exercises (with Solutions)

Topics include interpreting graphs, tables, inverses, domain, average rate of change, and more.

The domain is the set of independent values that are defined in a function.
When finding the domain of composite functions, you must find the domain of the first function AND the composite function.

$$
\text { Example: } f(\mathrm{x})=\frac{1}{\mathrm{x}+2} \quad g(\mathrm{x})=\frac{\mathrm{x}-1}{\mathrm{x}+5} \quad \text { What is the domain of } g(f(\mathrm{x})) \text { ? }
$$

Method 1: Find composite function, then determine domain

So, the domain is all real numbers except

$$
\mathrm{x} \neq-2 \quad \text { or } \quad \mathrm{x} \neq-11 / 5
$$

Method 2: Find domain of 1st function, then identify elements that would conflict with 2nd function
The first function is $f(x)=\frac{1}{x+2} \quad$ so x cannot equal -2
then, the second function is $\quad g(\mathrm{x})=\frac{\mathrm{x}-1}{\mathrm{x}+5} \quad$ so, x cannot equal $-5 .$.
***So, when is $f(x)=-5$?

$$
\begin{aligned}
-5=\frac{1}{\mathrm{x}+2} \quad-5 \mathrm{x}-10 & =1 \\
-5 \mathrm{x} & =11 \\
\mathrm{x} & =-11 / 5
\end{aligned}
$$

Therefore, x cannot be -2 because it's undefined in $f(\mathrm{x}) \ldots$ And,
x cannot be $-11 / 5$, because $f(-11 / 5)=-5$ and, -5 is undefined in $g(x)$

Example: $f(\mathrm{x})=\frac{1}{\mathrm{x}+2} \quad g(\mathrm{x})=\frac{\mathrm{x}-1}{\mathrm{x}+5} \quad$ What is the domain of $f(g(\mathrm{x}))$?

Domain of $g(x)$ is all reals except $\mathrm{x}=-5$
Domain of $f(x)$ is all reals except $x=-2$
So, when is $g(x)=-2$?

$$
-2=\frac{x-1}{x+5}
$$

Therefore, the domain is

$$
\begin{aligned}
-2 \mathrm{x}-10 & =\mathrm{x}-1 \\
-9 & =3 \mathrm{x} \\
-3 & =\mathrm{x}
\end{aligned}
$$

$$
\begin{aligned}
f(g(x)) & =\frac{1}{\frac{x-1}{x+5}+2} \\
& =\frac{1}{\frac{x-1}{x+5}+\frac{2(x+5)}{(x+5)}} \\
& =\frac{x+5}{3 x+9}<x=-5
\end{aligned}
$$

I. Components of Functions

Split the following into 2 (or more) components.

Example: $h(\mathrm{x})=(\mathrm{x}+3)^{2}$
If $h(x)=(f \circ g)(x)$, what are $f(x)$ and $g(x)$?

$$
f(x)=x^{2} \quad g(x)=(x+3)
$$

because $f(g(x))=(x+3)^{2}$

Note: $g(\mathrm{x})=\mathrm{x}^{2} \quad f(\mathrm{x})=(\mathrm{x}+3)$
is NOT correct!

$h(\mathrm{x})=(f \circ g)(\mathrm{x}) \quad$ Determine possible functions $f(\mathrm{x})$ and $g(\mathrm{x})$:

a) $h(x)=\frac{1}{x^{2}+1}$
b) $h(x)=\sqrt{x}+1$
c) $h(\mathrm{x})=\sqrt{\mathrm{x}+1}$
d) $h(x)=\sqrt{2 x+1}$
e) $h(x)=(3 x+9)^{5}$
f) $h(x)=\sin ^{4} x$
$p(\mathrm{t})=(f \circ g \circ h)(\mathrm{t}) \quad$ Determine possible functions $f(\mathrm{t}), g(\mathrm{t})$, and $h(\mathrm{t})$
g) $\quad p(\mathrm{t})=\cos ^{2}(3 \mathrm{t}+5)$
h) $p(\mathrm{t})=\log \left(\mathrm{t}^{2}+1\right)$
II. Answer the questions for the following graph:

a) $(\mathrm{f}+\mathrm{g})(3)=$
b) $(f \circ g)(3)=$
c) $(g \circ f)(3)=$
d) $(f \circ f)(1)=$
e) $g(g(4))=$
f) $\mathrm{g}^{-1}(3)=$
g) $f^{-1}(3)=$
h) $(\mathrm{f}-\mathrm{g})(0)=$

1) For the given functions
$f(\mathrm{x})=\sqrt{\mathrm{x}}$
$g(\mathrm{x})=2 \mathrm{x}+3 \quad$ find the domains of the composites:
a) $f \circ g$
b) $g \circ f$
c) $f \circ f$
d) $g \circ g$
2) $f(\mathrm{x})=\frac{3}{\mathrm{x}-1} \quad g(\mathrm{x})=\frac{2}{\mathrm{x}}$

Find the domains:
a) $f \circ g$
b) $g \circ f$
c) $f \circ f$
d) $g \circ g$
3) $f(\mathrm{x})=\mathrm{x}^{2}-16 \quad \mathrm{~g}(\mathrm{x})=\sqrt{\mathrm{x}}$

Find the domains:
a) $f(g(x))$
b) $g(f(x))$
c) $f(f(x))$
d) $g(g(x))$

IV: Inverse and Composite Values (graph)
$f(\mathrm{x})$

What value(s) of x solves each equation?
a) $f(x)=4$
b) $f(x)=-1$
d) $f(x) \cdot g(x)=0$
e) $f(x)+g(x)=4$
g) $g(f(x))=4$
h) $(f \circ g)(\mathrm{x})=1$
V. Intrepreting values from a table
a) What is the domain of f ? g ?
b) What is the domain of $\frac{g}{f} ? \frac{f}{g}$?
c) What is the domain of $f(g(x))$? $\quad g(f(x))$?
d) $(f \circ f)(0)=$
e) $(g \circ g)(-1)=$
f) If $(f \circ g)(x)=3$, what is x ?
g) If $g(f(x))=-4$ then what is x ?
h) If $\mathrm{fg}=8$, what is x ?
$g(\mathrm{x})$

c) $g(x)+2=9$
f) $(g \circ g)(4)=$?
i) $\left(\frac{f}{g}\right)(0)=$

Assume the values in the table are all the elements in each function.

x	$f(\mathrm{x})$	$g(\mathrm{x})$
-4	-1	-3
-3	6	2
-2	4	0
-1	0	5
0	1	6
1	3	-1
2	3	1
3	2	4
4	-2	-4

VI. Applications

1) A dress size in France as it relates to the US is modeled in the function

$$
\mathrm{s}(\mathrm{x})=\mathrm{x}-32
$$

And, a dress size in the US as it relates to Italy is modeled by the function

$$
y(x)=2(x+10)
$$

What is the function for the dress size in France as it relates to Italy?
2) Using the given functions, find the Average Rates Of Change (AROC)

a) $f(x)=3 x+2$
b) $g(x)=2 x^{2}+x-1$
VII. Miscellaneous Questions
a) Find $f \circ g \circ h$
$f(x)=x^{2}+4$
$g(\mathrm{x})=5 \mathrm{x}$
$h(\mathrm{x})=\mathrm{x}^{2}-\mathrm{x}-2$
b) $f(x)=-3 x$
$g(x)=-x+4$
a) $3 x-4$
b) $-3 x-4$
c) $3 x+4$
d) $3 x^{2}+4$
e) $-3 x^{2}+4$

$$
\frac{f(x+h)-f(x)}{h}
$$

c) $h(x)=\frac{1}{x-1}$
c) $f(x)=2 x+1$
$g(\mathrm{x})=\mathrm{x}^{2}$
For what values of x does $(f \circ g)(\mathrm{x})=(g \circ f)(\mathrm{x})$?
d) $f(x)=3 x+8$

If $f(f(\mathrm{x}))=23$, what is x ?
e) Given: $f(x)=(x-6)(x-4)$

$$
g(\mathrm{x})=\mathrm{x}+1
$$

When is $g(f(x))=0$?
f) $f(x)=x^{2}-4$

$$
g(x)=\sqrt{3 \mathrm{x}}
$$

Find and compare the domain of $(f \circ g)(x)$ and $(g \circ f)(x) \ldots$
g) $f(x)=\sqrt{x+4}$

$$
g(x)=\frac{3}{x}
$$

$$
\text { Find }(\mathrm{f} \circ \mathrm{~g})(\mathrm{x}) \text { and its domain... }
$$

$$
(g \circ f)(x) \text { and its domain }
$$

Solutions- \rightarrow

Split the following into 2 (or more) components.

Example: $h(\mathrm{x})=(\mathrm{x}+3)^{2}$
If $h(x)=(f \circ g)(x)$, what are $f(x)$ and $g(x)$?

$$
f(\mathrm{x})=\mathrm{x}^{2} \quad g(\mathrm{x})=(\mathrm{x}+3)
$$

because $f(g(x))=(x+3)^{2}$

Note: $g(x)=x^{2} \quad f(x)=(x+3)$
is NOT correct!

II. Answer the questions for the following graph:

a) $(\mathrm{f}+\mathrm{g})(3)=\mathrm{f}(3)+\mathrm{g}(3)=-4+6=2$
b) $(\mathrm{f} \circ \mathrm{g})(3)=$
$g(3)=6$ and $f(6)-4$
c) $(g \circ f)(3)=f(3)=-4$ and then $g(-4)=-1$
d) $(f \circ f)(1)=f(1)=-4$ and then $f(-4)=-4$
e) $\mathrm{g}(\mathrm{g}(4))=\quad \mathrm{g}(4)=7$ and then $\mathrm{g}(7)=10$
f) $\mathrm{g}^{-1}(3)=\quad$ g of what number equals 3 " ?
0 (because $\mathrm{g}(0)=3$)
g) $f^{-1}(3)=\quad$ since no input into $f(x)$ would produce 3 , there is no solution ϕ
h) $(\mathrm{f}-\mathrm{g})(0)=\mathrm{f}(0)-\mathrm{g}(0)=-4-3=-7$

SOLUTIONS

1) For the given functions
$f(\mathrm{x})=\sqrt{\mathrm{x}}$
$g(\mathrm{x})=2 \mathrm{x}+3 \quad$ find the domains of the composites:
a) $f \circ g$
a) First, find the domain of g. all real numbers
Then, find the domain of $f \circ g . \cdot \sqrt{2 \mathrm{x}+3} \longrightarrow \mathrm{x} \geq-3 / 2$
b) $g \circ f$
Finally, identify the intersection.. \quad all real $\} \cap\{x \geq-3 / 2\}=x \geq-3 / 2$
c) Domain of f : $\quad \mathrm{x} \geq 0$
Domain of $f \circ f: \mathrm{x} \geq 0$
$\{$ domain of $f\} \cap\{$ domain of $f \circ f\}=\mathrm{x} \geq 0$
c) $f \circ f$
b) Domain of $f: \mathrm{x} \geq 0$
Of those numbers, all of them can go into g
d) $g \circ g$

d) Domain of g : all real numbers
Domain of $g \circ g \quad 2(2 x+3)+3$: all real numbers therefore domain is all real numbers
2) $f(\mathrm{x})=\frac{3}{\mathrm{x}-1} \quad g(\mathrm{x})=\frac{2}{\mathrm{x}}$
$\frac{3}{(1)-1}$ is undefined

Find the domains:

a) domain of g : all reals except $x=0$
a) $f \circ g$
b) $g \circ f$
c) $f \circ f$
d) $g \circ g$ domain of $f \circ g \quad \frac{3}{\frac{2}{x}-1} \quad x \neq 2$
all real numbers except 0 and 2
b) $x \neq 1$ $g(f(\mathrm{x}))=\frac{2}{\frac{3}{\mathrm{x}-1}}=\frac{2 \mathrm{x}-2}{3}$
c) domain of f : all reals except $\mathrm{x}=1$
domain of $f \circ f$ all reals except $\mathrm{x}=4 \quad 3$
domain of $f \circ f:$ all reals except $\mathrm{x}=4$
$-\frac{3}{\mathrm{x}-1}-1$
$\{x \mid x \neq 1,4\}$
d) domain of g : all reals except 0
since any result from this domain will work, the domain is

$$
\{x \mid x \neq 0\}
$$

3) $f(x)=x^{2}-16 \quad g(x)=\sqrt{x}$

Find the domains:
a) $f(g(x))$
b) $g(f(x))$
c) $f(f(x))$

> all real numbers
d) $g(g(x)) \quad x \geq 0$
a) $f(g(x))$
domain of $f(g(\mathrm{x}))=$ domain of $g(\mathrm{x}) \cap$ domain of $f(g(\mathrm{x}))$

> first, find numbers coming from $g(x) . . \quad x \geq 0$
then, consider which of those numbers are permitted in $f(x)$..

b) domain of $f(x) \cap$ domain of $g(f(x))$

domain of the composite: $|x| \geq 4$

NOTE: When finding domain of composite, you must consider the domain of the first function as well as the composite...

$$
\begin{aligned}
& \mathrm{g}(\mathrm{x})=\sqrt{\mathrm{x}} \quad f(g(\mathrm{x}))=\mathrm{x}-16 \\
& x \geq 0 \quad \cap \quad \text { all real } \\
& \text { DOMAIN: } \quad \mathrm{x} \geq 0
\end{aligned}
$$

$f(x)$

SOLUTIONS
$g(\mathrm{x})$

What value(s) of x solves each equation?
a) $f(\mathrm{x})=4$
when $\mathrm{x}=-3$

$$
\begin{aligned}
f^{-1}(4) & =x \\
& =-3
\end{aligned}
$$

b) $f(x)=-1$
when $x=-1$ or 2
c) $g(x)+2=9$

$$
g(x)=7 \quad \text { this occurs when } x=3 \text { or } 6
$$

$$
\begin{aligned}
f^{-1}(-1) & =\mathrm{x} \\
& =-1 \text { or } 2
\end{aligned}
$$

d) $f(x) \cdot g(x)=0$
This occurs if $f(x)=0$
or $g(\mathrm{x})=0 \ldots$

$$
x=-(,-2, \text { or } 4) \begin{aligned}
& \text { since } g(-4) \text { does } \\
& \text { not exist, it } \\
& \text { is eliminated. }
\end{aligned}
$$

e) $f(x)+g(x)=4$
answers include the interval $[-2,-1]$,
$\mathrm{x}=2$
(and, somewhere between -4 and -3)
because if $x=-4$,
then 2. If $x=-3$,
then 7. In between, the composite crosses 4 .
f) $(g \circ g)(4)=$?

$$
\begin{aligned}
& g(4)=8 \\
& \text { then, } g(8)=7
\end{aligned}
$$

g) $g(f(x))=4$
$\mathrm{g}(\mathrm{x})=4$ when x is $-2 \ldots$
So, when is $f(x)=-2$?
this occurs when $\mathrm{x}=0$
h) $(f \circ g)(x)=1$
since $f(x)$ must equal $1 \ldots$
$g(x)$ must equal $-3.75,-2.25,6$, or 9 ..
this occurs when

$$
\mathrm{x}=9,2.5,6.5,7.5
$$

V. Intrepreting values from a table

a) What is the domain of $f ? g$?
domain for each: $\{-4,-3,-2,-1,0,1,2,3,4\}$
all elements except-1
b) What is the domain of $\frac{g}{f}$? $\frac{f}{g}$? (because $f(-1)=0$)
c) What is the domain of $f(g(\mathrm{x}))$? $\quad g(f(\mathrm{x}))$?
d) $(f \circ f)(0)=$

$$
\begin{aligned}
& f(0)=1 . . \\
& \text { then, } f(1)=3
\end{aligned}
$$

e) $(g \circ g)(-1)=g(-1)=5 \ldots$
g(5) Does Not Exist!
f) If $(f \circ g)(x)=3$, what is x ? $x=-3,2$
g) If $g(f(x))=-4$ then what is x ? $x=-2$
h) If $\mathrm{fg}=8$, what is $\mathrm{x} ? \quad \mathrm{x}=3,4$

$$
\begin{aligned}
& g(\mathrm{x}) \text { must be } \\
& -4,-3,-2,-1,0, \\
& 1,2,3, \text { or } 4 \text { to } \\
& \text { qualify for } f(\mathrm{x}) \\
& \text { therefore, } \\
& \text { domain of } \\
& f(g(x)) \text { is } \\
& \{-4,-3,-2,1,2,3,4\}
\end{aligned}
$$

Assume the values in the table are all the elements in each function.

x	$f(\mathrm{x})$	$g(\mathrm{x})$
-4	-1	-3
-3	6	2
-2	4	0
-1	0	5
0	1	6
1	3	-1
2	3	1
3	2	4
4	-2	-4

1) A dress size in France as it relates to the US is modeled in the function

$$
\mathrm{s}(\mathrm{x})=\mathrm{x}-32
$$

And, a dress size in the US as it relates to Italy is modeled by the function

$$
y(x)=2(x+10)
$$

What is the function for the dress size in France as it relates to Italy?
2) Using the given functions, find the Average Rates Of Change (AROC)
$\frac{f(\mathrm{a}+\mathrm{h})-f(\mathrm{a})}{\mathrm{h}}$
$\frac{f(x+\Delta x)-f(x)}{\Delta x}$

$$
\begin{aligned}
& f(x)=x^{2}+4 \\
& g(x)=5 x
\end{aligned}
$$

$$
h(\mathrm{x})=\mathrm{x}^{2}-\mathrm{x}-2
$$

$$
5 x^{2}-5 x-10
$$

$$
\frac{5 \cdot x^{2}-5 x-10}{25 x^{4}-25 x^{3}-50 x^{2}}
$$

$$
\begin{aligned}
& \text { b) } g(x)=2 x^{2}+x-1 \\
& \frac{2(x+\Delta x)^{2}+(x+\Delta x)-1-\left(2 x^{2}+x-1\right)}{\Delta x} \\
& \frac{2 x^{2}+4 x \Delta x+2 \Delta x^{2}+x+\Delta x-2 x^{2}-x}{\Delta x} \\
& \frac{4 x \Delta x+2 \Delta x^{2}+\Delta x}{\Delta x} \\
& 4 x+2 \triangle x+1
\end{aligned}
$$

$4 x+2 \triangle x+1$
$\mathrm{x}=$
$\rightarrow \triangle \mathrm{x}=3 \quad$ so, $\mathrm{AROC}=4(2)+2(3)+1=15$
change between 2 and 5
slope between $(2,9)$ and $(5,54)$ is $45 / 3=15$

$$
f(g(h(x)))
$$

working from right to left:

$$
\left(5 x^{2}-5 x-10\right)^{2}+4
$$

```
NOTE: AROC between 2 and 5
NOTE: AROC between 2 and 5
```

 slope between \((2,9)\) and \((5,54)\) is \(45 / 3=15\)
 $$
g \circ h=5\left(x^{2}-x-2\right)
$$

$$
=5 x^{2}-5 x-10
$$

$$
\text { then, find } f \circ(g \circ h)
$$

$$
25 x^{4}-50 x^{3}-75 x^{2}+100 x+104
$$

b) $f(x)=-3 x$
$g(x)=-x+4$
a) $3 x-4$
b) $-3 x-4$
c) $3 x+4$
d) $3 x^{2}+4$
e) $-3 x^{2}+4$

$$
-25 x^{3}+25 x^{2}+50 x
$$

$$
+\frac{-50 x^{2}+50 x+100}{25 x^{4}-50 x^{3}-75 x^{2}+100 x+100}
$$

If you input the size in Italy, the output is the dress size in US...

$$
y(x)=2 x+20
$$

$$
\mathrm{s}(\mathrm{y}(\mathrm{x}))=(2 \mathrm{x}+20)-32
$$

Then, if you input the US size, the output is the dress size in France..

$$
s(x)=x-32
$$

$$
=2 \mathrm{x}-12
$$

where x is the dress size in Italy.

Average Rate Of Change (AROC)

$$
\frac{f(\mathrm{a}+\mathrm{h})-f(\mathrm{a})}{\mathrm{h}} \text { or } \quad \frac{f(\mathrm{a})-f(\mathrm{~b})}{\mathrm{a}-\mathrm{b}}
$$ What is $(g \circ f)(\mathrm{x})$?

$$
\begin{aligned}
g(f(x)) & =-(-3 x)+4 \\
& =3 x+4
\end{aligned}
$$

c) $f(x)=2 x+1$
$g(x)=x^{2}$

For what values of x does $(f \circ g)(\mathrm{x})=(g \circ f)(\mathrm{x})$?

$$
\begin{aligned}
& f(g(\mathrm{x}))=f\left(\mathrm{x}^{2}\right)=2 \mathrm{x}^{2}+1 \\
& g(f(\mathrm{x}))=g(2 \mathrm{x}+1)=4 \mathrm{x}^{2}+4 \mathrm{x}+1
\end{aligned}
$$

$$
\begin{gathered}
2 x^{2}+1=4 x^{2}+4 x+1 \\
2 x^{2}+4 x=0
\end{gathered}
$$

$$
2 x(x+2)=0
$$

d) $f(x)=3 x+8$

$$
x=0,-2
$$

If $f(f(x))=23$, what is x ?

$$
\text { outside function } f \quad \text { Inside function } f
$$

$$
\begin{array}{rl}
f(\mathrm{x})=23 & f(\mathrm{x})=5 \\
3 \mathrm{x}+8=23 & 3 \mathrm{x}+8=5 \\
\mathrm{x}=5 & \mathrm{x}=-1
\end{array}
$$

e) Given: $f(x)=(x-6)(x-4)$

So, when is $g(x)=0 ?$

$$
g(x)=x+1
$$

This occurs when $\mathrm{x}=-1$, because $g(-1)=0$
Now, we must find out when $f(x)=-1 \ldots$

$$
\begin{aligned}
& -1=(x-6)(x-4) \\
& -1=x^{2}-10 x+24 \\
& (x-5)(x-5)=0 \\
& x=5
\end{aligned}
$$

f) $f(x)=x^{2}-4 \quad g(x)=\sqrt{3 x}$

Find and compare the domain of $(f \circ g)(\mathrm{x})$ and $(g \circ f)(\mathrm{x}) \ldots$

g) $f(x)=\sqrt{x+4}$
$g(x)=\frac{3}{x}$

$$
\begin{aligned}
& \text { Find }(\mathrm{f} \circ \mathrm{~g})(\mathrm{x}) \text { and its domain... } \\
& \quad(\mathrm{g} \circ \mathrm{f})(\mathrm{x}) \text { and its domain } \\
& \quad\left(\mathrm{g} \circ \mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{f}(\mathrm{x}))=\frac{3}{\sqrt{\mathrm{x}+4}}\right.
\end{aligned}
$$

since domain of $f(x)$ is $x \geq-4$,
and domain of $(g \circ f)(x) \quad x>-4$,

$$
\text { the domain is the intersection }(-4, \infty)
$$

$$
(\mathrm{f} \circ \mathrm{~g})(\mathrm{x})=\mathrm{f}(\mathrm{~g}(\mathrm{x}))=\sqrt{\frac{3}{\mathrm{x}}+4}
$$

since domain of $\mathrm{g}(\mathrm{x})$ is all reals EXCEPT 0
and, domain of $(f \circ g)(x) \quad \frac{3}{x}+4 \geq 0$

domain is $(-\infty,-3 / 4]$ U $(0, \infty)$

Thanks for visiting. (Hope it helped!)
If you have questions, suggestions, or requests, let us know. Cheers

Also, TeachersPayTeachers, Facebook, Google+, TES, \& Pinterest.
And, Mathplane Express for mobile at Mathplane.ORG

