Completing the Square \& the Quadratic Formula

Notes, Examples, and Practice Exercises (with Solutions)

Topics include discriminant, geometric display, standard form of a circle, deriving the quadratic formula, maximum of a parabola, and more.

Completing the Square

What is it? A technique for simplifying or solving quadratic equations.
Example:
Solve $x^{2}+3 x-11=0$

The coefficient of the first term must be 1 .

The term is added to both sides so that the equation does not change.

The factored trinomial becomes a perfect square!

Taking the square root of a square results in + or - solution

Example: Change the following quadratic equation into vertex form.

$$
y=2 x^{2}+x-28 \quad \text { What is the vertex? }
$$

Step 1: Separate the variables

$$
2 x^{2}+\mathrm{x} \quad-28
$$

Step 1a: Change lead coefficient to 11

$$
2\left(x^{2}+\frac{x}{2} \quad\right) \cdot-28
$$

Step 2: "Complete the square"

$$
\begin{aligned}
& \mathrm{b}=1 / 2 \text { so, }\left(\frac{\mathrm{b}}{2}\right)^{2}=\frac{1}{16} \\
& 2\left(\mathrm{x}^{2}+\frac{\mathrm{x}}{2}+\frac{1}{16}\right)-28-\frac{2}{16}
\end{aligned}
$$

Step 3: Factor and simplify

$$
\frac{2\left(x+\frac{1}{4}\right)^{2}-\frac{450}{16}}{2\left(x+\frac{1}{4}\right)^{2}-\frac{225}{8}}
$$

Step 4: Solve

$$
\text { Vertex form: } \mathrm{y}=\mathrm{a}(\mathrm{x}-\mathrm{h})^{2}+\mathrm{k}
$$

NOTE: we add $2 \times \frac{1}{16}$ to complete the

$$
\text { Vertex is (} \mathrm{h}, \mathrm{k} \text {): }
$$ square; then, we subtract the same quantity so the equation remains unchanged

$$
\left(\frac{-1}{4}, \frac{-225}{8}\right)
$$

Example: The following is the general equation of a circle.

What is the center of the circle?

$$
x^{2}+10 x+y^{2}-8 y+32=0
$$

Change to standard form of a circle:

Complete the squares to answer:
Step 1: Separate the variables

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

where (h, k) is the center and r is the radius

$$
\begin{array}{lll}
x^{2}+10 x+ & y^{2}-8 y+32 & =0 \\
x^{2}+10 x+ & y^{2}-8 y+ & =-32
\end{array}
$$

Step 2: Complete the squares

$$
x^{2}+10 x+25+y^{2}-8 y+16=-32+25+16 \quad \int^{\text {Use }}\left(\frac{\mathrm{b}}{2}\right)^{2} \quad \begin{array}{r}
\text { Add to left side } \ldots \\
\ldots . . \text { must add to right side }
\end{array}
$$

Step 3: Factor the (perfect square) trinomials

$$
\begin{aligned}
& (x+5)(x+5)+(y-4)(y-4)=9 \\
& (x+5)^{2}+(y-4)^{2}=9
\end{aligned}
$$

Step 4: Answer

$$
(x-h)^{2}+(y-k)^{2}=r^{2} \quad \text { Then, } h=-5 \quad k=4 \begin{array}{|l|}
\hline \text { Center is }(-5,4) \\
\text { Radius is } 3
\end{array}
$$

points include: $(-5,1)(-5,7)$

$$
(-2,4)(-8,4)
$$

Example: What is the maximum of this function?

$$
3 x^{2}-18 x+y+22=0
$$

Step 1: Rearrange and separate the variables

$$
y+22=-3 x^{2}+18 x
$$

Step 1a: Change lead coefficient to 1

$$
y+22=-3\left(x^{2}-6 x\right)
$$

Step 2: Complete the square

$$
y+22+-3(9)=-3\left(x^{2}-6 x+9\right)
$$

Step 3: Factor the trinomial and simplify

This is the general form of a parabola. If we complete the square, we will reveal the vertex (maximum, because this parabola faces down)

Change to vertex form of a parabola:

$$
y=a(x+h)^{2}+k
$$

$$
\begin{aligned}
& y-5=-3(x-3)(x-3) \\
& y=-3(x-3)^{2}+5
\end{aligned}
$$

$$
\mathrm{h}=3 \quad \mathrm{k}=5 \left\lvert\, \begin{aligned}
& \text { the vertex is }(3,5) \\
& \text { which is the maximum of } \\
& \text { this function }
\end{aligned}\right.
$$

Example: Graph the function $f(\mathrm{x})=\mathrm{x}^{2}-2 \mathrm{x}$
This quadratic does not have a "direct parent function"....
But, if we complete the square:

$$
x^{2}-2 x+1 \longrightarrow(x-1)(x-1)=(x-1)^{2}
$$

Then, compare the result with the original function:

$$
\begin{aligned}
x^{2}-2 x+1 & =(x-1)^{2} \\
\text { so, } x^{2}-2 x & =(x-1)^{2}-1
\end{aligned}
$$

Now, let's graph:
parent function: x^{2}
horizontal shift: 1 unit to the right
vertical shift: 1 unit down

Example: Graph the function $\mathrm{x}^{2}+4 \mathrm{x}+7$
(by completing the square and using the parent function)
Take the quadratic term and linear term, $x^{2}+4 x$, and complete the square

$$
\begin{aligned}
x^{2}+4 x+4 & \longrightarrow(x+2)(x+2)=(x+2)^{2} \\
x^{2}+4 x+4 & =(x+2)^{2} \\
\text { so, } \quad x^{2}+4 x+7 & =(x+2)^{2}+3
\end{aligned}
$$

Now, let's graph:
parent function: x^{2}
horizontal shift: 2 units to the left
vertical shift: 3 units up

Factor by completing the square (advanced)
Example: $\mathrm{x}^{4}+2 \mathrm{x}^{2}+9$

$$
\begin{aligned}
& \text { create a perfect square trinomial } \\
& \text { factor } x^{4}+2 x^{2}+4 x^{2}+9-4 x^{2} \\
& x^{4}+6 x^{2}+9 \quad-4 x^{2} \\
& \\
& \\
& \\
& \\
& {\left[\left(x^{2}+3\right)^{2}-4 x^{2} \quad\right. \text { (difference of squares) }} \\
& \\
& \left(x^{2}+2 x+3\right)\left(x^{2}-2 x+3\right)
\end{aligned}
$$

Example: $\mathrm{x}^{4}+4$
create a perfect square trinomial

$$
\begin{aligned}
& x^{4}+4 x^{2}+4-4 x^{2} \\
& x^{4}+4 x^{2}+4-4 x^{2} \\
& \left(x^{2}+2\right)\left(x^{2}+2\right)-4 x^{2} \\
& \quad\left(x^{2}+2\right)^{2}-4 x^{2} \quad \text { (difference of squares) } \\
& \left(x^{2}+2+2 x\right)\left(x^{2}+2-2 x\right)
\end{aligned}
$$

Example: $\mathrm{x}^{4}-18 \mathrm{x}^{2}+1$

(create a perfect square trinomial
by splitting the middle)

$\left(x^{2}-1\right)\left(x^{2}-1\right)-16 x^{2}$

$\left(x^{2}-1\right)^{2}-16 x^{2}$

$\left[\left(x^{2}-1\right)+4 x\right]\left[\left(x^{2}-1\right)-4 x\right]$
$\left(x^{2}+4 x-1\right)\left(x^{2}-4 x-1\right)$

Example: Solve $\mathrm{x}^{4}-19 \mathrm{x}^{2}+25=0$

$$
\begin{aligned}
& x^{4}-10 x^{2}+25-9 x^{2} \\
& \quad\left(x^{2}-5\right)^{2}-9 x^{2} \\
& {\left[\left(x^{2}-5\right)+3 x\right]\left[\left(x^{2}-5\right)-3 x\right]} \\
& \left(x^{2}+3 x-5\right)\left(x^{2}-3 x-5\right)=0
\end{aligned}
$$

$$
\left(x^{2}+3 x-5\right)=0 \quad\left(x^{2}-3 x-5\right)=0
$$

quadratic formula

$$
x=\frac{-3 \pm \sqrt{9+20}}{2} \quad x=\frac{3 \pm \sqrt{9+20}}{2}
$$

Quadratic Formula

The quadratic formula is derived from 'completing the square'.
It can be used to find the roots of a quadratic equation
(i.e. "what values of x equal zero")

So, it can be used to factor a quadratic equation.

$$
\begin{aligned}
& \text { Quadratic Formula } \\
& \mathrm{x}=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}
\end{aligned}
$$

Examples:

1) Solve using the quadratic formula

$$
\begin{aligned}
& 3 x^{2}+2 x-5=0 \\
& \begin{array}{l}
a=3 \\
b=2 \\
c=-5
\end{array} \quad x=\frac{-2 \pm \sqrt{2^{2}+4(3)(-5)}}{2(3)}=\frac{-2 \pm \sqrt{64}}{6} \quad \frac{-2+8}{6}=1 \quad x=\frac{-5}{3}, 1
\end{aligned}
$$

2) Factor the following function

$$
\begin{aligned}
& x^{2}+10 x+21 \\
& a=1 \\
& b=10 \\
& c=21
\end{aligned} \quad \frac{-10 \pm \sqrt{10^{2}-4(1)(21)}}{2(1)}=\frac{-10 \pm \sqrt{16}}{2} \cdots \frac{-10+4}{2}=-3
$$

-3 and -7 are zeros of the quadratic..
Therefore, $(x+3)$ and $(x+7)$ are factors.

$$
x^{2}+10 x+21=(x+3)(x+7)
$$

The Discriminant:

$$
\mathrm{x}=\frac{-\mathrm{b}- \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}} \quad \mathrm{~b}^{2}-4 \mathrm{ac} \text { is the discriminant }
$$

$$
\begin{aligned}
& b^{2}-4 a c>0 \text { then } 2 \text { real roots } \\
& b^{2}-4 a c=0 \text { then } 1 \text { real root } \\
& b^{2}-4 a c<0 \text { then } 0 \text { real roots }
\end{aligned}
$$

Examples: $\quad \mathrm{x}^{2}+8 \mathrm{x}+16$
discriminant is $\mathrm{b}^{2}-4 \mathrm{ac}$

$$
=8^{2}-4(1)(16)=0
$$

one x -intercept

$$
-x^{2}+5 x+14
$$

$x^{2}+4$
discriminant is $b^{2}-4 a c$

$$
=5^{2}-4(-1)(14)=81>0
$$

two x -intercepts (zeros)

$a=1 \quad$ discriminant is $-16<0$
$\mathrm{b}=0$
$c=4 \quad$ there are no real roots
(2 imaginary roots: $2 i$ and $-2 i$)

$$
a x^{2}+b x+c=0
$$

Solve for x (by completing the square):

$$
\begin{aligned}
& \text { Quadratic Formula } \\
& \mathrm{x}=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { separate the variable } \quad \mathrm{ax}^{2}+\mathrm{bx} \quad+\mathrm{c}=0 \\
& \text { change lead coefficient to } 1 \\
& \text { (factor out the ' } a \text { ') } \\
& a\left(x^{2}+\frac{b}{a} x\right) \quad+c=0 \\
& \text { complete the square by } \\
& \text { adding } \\
& \left(\frac{b}{\frac{a}{2}}\right)^{2} \frac{a\left(x+\frac{b}{a} x+\frac{b}{4 a^{2}}\right)+c=0+\frac{b}{4 a}}{a\left(x+\frac{b}{2 a}\right)\left(x+\frac{b}{2 a}\right)+c=0+\frac{b^{2}}{4 a}}
\end{aligned}
$$

Factor

$$
\mathrm{a}\left(\mathrm{x}+\frac{\mathrm{b}}{2 \mathrm{a}}\right)^{2}+\mathrm{c}=0+\frac{\mathrm{b}^{2}}{4 \mathrm{a}}
$$

Isolate the binomial

$$
\begin{aligned}
\mathrm{a}\left(\mathrm{x}+\frac{\mathrm{b}}{2 \mathrm{a}}\right)^{2} & =\frac{\mathrm{b}^{2}}{4 \mathrm{a}}-\mathrm{c} \\
\mathrm{a}\left(\mathrm{x}+\frac{\mathrm{b}}{2 \mathrm{a}}\right)^{2} & =\frac{\mathrm{b}^{2}}{4 \mathrm{a}}-\frac{4 \mathrm{a}^{2} \mathrm{c}}{4 \mathrm{a}} \\
\frac{\mathrm{a}}{(\mathrm{a})}\left(\mathrm{x}+\frac{\mathrm{b}}{2 \mathrm{a}}\right)^{2} & =\frac{\mathrm{b}^{2}-4 \mathrm{a}^{2} \mathrm{c}}{4 \mathrm{a}(\mathrm{a})}
\end{aligned}
$$

Square root both sides

$$
\begin{array}{ll}
x+\frac{b}{2 a}=\frac{ \pm \sqrt{b^{2}-4 a^{2} c}}{2 a} \\
x=\frac{-b}{2 a} \pm \frac{\sqrt{b^{2}-4 a^{2} c}}{2 a} & x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{array}
$$

$$
x^{2}+5 x-12=0
$$

$$
\text { Completing the square: } \quad \begin{array}{rlrl}
x^{2}+5 x-12 & =0 & \text { Quadratic Formula: } & \begin{array}{l}
a=1 \\
b \\
b
\end{array} \\
x^{2}+5 x+\frac{25}{4} & =12+\frac{25}{4} & \\
\left(x+\frac{5}{2}\right)^{2} & =\frac{73}{4} . & x=\frac{-(5) \pm \sqrt{(5)^{2}-4(1)(-12)}}{2(1)} \\
x+\frac{5}{2} & = \pm \sqrt{\frac{73}{4}} \\
x & =\frac{-5}{2} \pm \frac{\sqrt{73}}{2} & x=\frac{-5 \pm \sqrt{73}}{2}
\end{array}
$$

Completing the square (geometrically)

$$
x^{2}-10 x
$$

To create a square, the sides must be equal. So, we must subtract 10 from the vertical sides and redistribute...

We need a small piece to complete the square:

Completing the Square and Quadratic Formula Quiz
I. Factor by Completing the Square
a) $x^{2}+4 x+8$
b) $x^{2}+3 x-4$
c) $-x^{2}+4 x+9$
d) $4 x^{2}-8 x+17$
e) $\frac{x^{2}}{3}+2 x+10$
f) $5 x^{2}+3 x+1$
II. Solve by Completing the Square
a) $x^{2}+4 x=7$
b) $-2 x^{2}+9 x+3=0$
c) $x^{2}+6 x=-11$
III. Solve using the Quadratic Formula
a) $x^{2}+7 x-3=0$
b) $2 x^{2}+8 x=-4$
c) $-x^{2}+3 x+5=0$

I. Factor by Completing the Square

a) $x^{2}+4 x+8$
$\begin{array}{ccc}x^{2}+4 x & +8 & \text { separate } \\ x^{2}+4 x+4 & +8-4 & \left(\frac{b}{2}\right)^{2}\end{array}$ $(x+2)(x+2)+4$ factor the $(x+2)^{2}+4$ trinomial
c) $-x^{2}+4 x+9$
$-1\left(x^{2}-4 x-9\right)$
change 1st
d) $4 x^{2}-8 x+17$
$4 x^{2}-8 x+17$
$4\left(x^{2}-2 x \quad\right)+17 \quad$ "change a to $1 "$
$\underbrace{4\left(x^{2}-2 x\right.}_{\text {add } 4}+1)+17-4$

$$
4(x-1)^{2}+13
$$

a) $x^{2}+4 x=7$
$\mathrm{x}^{2}+4 \mathrm{x}+4=7+4 \quad\left(\frac{\mathrm{~b}}{2}\right)^{2} \begin{aligned} & \text { to both } \\ & \text { sides }\end{aligned}$
$(x+2)(x+2)=11$

$\sqrt{(x+2)^{2}=11} \quad$| $x=-2 \pm \sqrt{11}$ |
| :--- |

$(x+2)= \pm \sqrt{11}$
III. Solve using the Quadratic Formula
a) $x^{2}+7 x-3=0$
$\mathrm{x}=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$
$\begin{aligned} & \mathrm{a}=1 \\ & \mathrm{~b}=7\end{aligned} \quad \mathrm{x}=\frac{-(7) \pm \sqrt{(7)^{2}-4(1)(-3)}}{2(1)}$
$c=-3$

$$
x=\frac{-7 \pm \sqrt{61}}{2}
$$

c) $-x^{2}+3 x+5=0$

$$
2 x^{2}+8 x+4=0
$$

$$
\begin{array}{lc}
\mathrm{a}=2 & \\
\mathrm{~b}=8 & \mathrm{x}=\frac{-(8) \pm \sqrt{(8)^{2}-4(2)(4)}}{2(2)} \\
\mathrm{c}=4 & \mathrm{x}=\frac{-8 \pm \sqrt{32}}{4} \\
& \mathrm{x}=-2 \pm \sqrt{2}
\end{array}
$$

> e) $\frac{x^{2}}{3}+2 x+10$ $\frac{x^{2}}{3}+2 x+\quad 10$ $\frac{1}{3}\left(x^{2}+6 x \quad\right)+10$ $\frac{1}{3}\left(x^{2}+6 x+9\right)+10-\frac{9}{3}$ $\frac{1}{3}(x+3)^{2}+7$
f) $5 x^{2}+3 x+1$

$$
5\left(x^{2}+\frac{3}{5} x+\frac{9}{100}\right)+1-\frac{45}{100}
$$

$$
5\left(\mathrm{x}+\frac{3}{10}\right)^{2}+\frac{11}{20}
$$

b) $-2 x^{2}+9 x+3=0$

$$
\begin{align*}
& -2\left(x^{2}+\frac{-9}{2} x\right)=-3 \\
& -2\left(x^{2}-\frac{9}{2} x+\frac{81}{16}\right)=-3+\frac{81}{16} \tag{-2}
\end{align*}
$$

c) $x^{2}+6 x=-11$
$5 \mathrm{x}^{2}+3 \mathrm{x} \quad+1$
$5\left(x^{2}+\frac{3}{5} x \quad\right)+1 \quad\left(\frac{3 / 5}{2}\right)^{2}=\frac{9}{100}$

$$
\begin{aligned}
x^{2}+6 x+9 & =-11+9 \\
(x+3)^{2} & =-2 \\
x+3=+\sqrt{-2} & \begin{array}{l}
\text { No } \\
\text { REAL } \\
\text { solutions }
\end{array}
\end{aligned}
$$

$$
\mathrm{x}=-3 \cdot \pm i \sqrt{2}
$$

b) $x^{2}+3 x-4$
$\left(x+\frac{3}{2}\right)^{2}-\frac{25}{4}$

$$
\begin{array}{cc}
x^{2}+3 x & -4 \\
x^{2}+3 x+\frac{9}{4}-4-\frac{9}{4}
\end{array}
$$ coefficient to 1

$$
-1\left(\begin{array}{cc}
x^{2}-4 x & -9)
\end{array}\right.
$$

separate
$-1\left(x^{2}-4 x+4-9-4\right) \quad\left(\frac{b}{2}\right)^{2}$
factor the

$-1\left((x-2)^{2}-13\right)$	factor the trinomial
$13-(x-2)^{2}$	

$$
13-(x-2)^{2} \quad \begin{array}{ll}
\text { factor the } \\
\text { trinomial }
\end{array}
$$

Thanks for visiting. (Hope it helped!)

If you have questions, suggestions, or requests, let us know. Cheers

Mathplane Express for mobile at Mathplane.org

Also, at Facebook, Google+, Pinterest, TES, and
TeachersPayTeachers

