Combinations \& Permutations:

An Introduction to Counting Principles

Packet includes formulas, examples, explanations, and applications. (Also, a practice puzzle and math comics.)

Why is this not a combination lock?

Combinations vs. Permutations

Permutation: --- A rearrangement of the elements of a set.
--- An ordered arrangement of n different objects.
The number of permutations (i.e. the number of different possible ordered arrangements) is n !

Example 1: How many ways can you arrange 4 chair in a row? 4! $4 \times 3 \times 2 \times 1=24$ ways

1234	1243	1324	1342	1423	1432
2134	2143	2314	2341	2413	2431
3124	3142	3214	3241	3412	3421
4123	4132	4213	4231	4312	4321

I listed all the possibilities (in numerical order to keep track).
Observe how we arrive at 4!
In position \#1, you can choose from the 4 chairs: 4 choices. Then, for position \#2, you can choose from 3 remaining chairs. Then, for position \#3, you can choose from the 2 remaining chairs.. Finally, the last chair goes into position \#4.

$$
4 \times 3 \times 2 \times 1=24(\text { or, } 4!)
$$

Combination: --- A collection of objects in a set. (*order does not matter..)

Example 2a: At an ice cream shop, there are 5 flavors. How many combinations of 3 flavors can we make?

$$
\begin{aligned}
& \mathrm{C}=\text { Chocolate } \quad \mathrm{V}=\text { Vanilla } \quad \mathrm{S}=\text { Strawberry } \quad \mathrm{M}=\text { Mint Chip } \quad \mathrm{R}=\text { Rainbow Sherbet } \\
& \text { CMRSV are the } 5 \text { flavors... } \begin{array}{l}
\text { The following are the combinations } \\
\text { (listed in alphabetical order to avoid confusion or 'double counting') }
\end{array}
\end{aligned}
$$

CMR CMS CMV CRS CRV CSV Notice that order does not matter! Therefore, we have fewer MRS MRV MSV RSV combinations (than permutations)
EX: Since we used CMR, we can ignore all other combinations of C, M, and R ..
Why? Because scoops of chocolate, rainbow, mint are the same as scoops of rainbow, mint, chocolate.

Example 2 b : An obvious question: how many combinations of 5 flavors are there?
ONE!! Ordering all 5 flavors can be done in only one way...

Deriving Math Formulas

Let's start with permutations... Assume we have 8 dogs:
1: Astro
2: Buster How many ways can we pick a Gold, Silver, and Bronze medal for
3: Chester
4: Dagwood
: Emmy
6: Fritz
7: Gus
8: Homer
(**Note: This is different than Example 1 above.. Instead of arranging ALL 8 in order, we are arranging 3 out of 8)

1: Astro Since each medal is specific (Gold, Silver, Bronze), the order we hand out these medals matters.

Buster
Chester
Dagwood
Emmy
Fritz
Gus
8: Homer

Therefore, we must use permutations.

Here's how it breaks down:
*Gold Medal -- 8 choices: A B C D E F G H (clever how the names match up with letters!). Let's assume A wins the gold.
*Silver Medal -- 7 choices: B C DEF G H Now, suppose B wins the silver.
*Bronze Medal -- 6 choices remain: C D E F G H
Then, suppose C wins the bronze.
We picked A, B, and C in this example. But, the details don't matter. The number of possibilities will be 8 choices, then 7 choices, then 6 choices.

The total number of possibilities will be $8 \times 7 \times 6=336$.

$$
{ }_{\mathrm{n}} \mathrm{P}_{\mathrm{k}}=\frac{\mathrm{n}!}{(\mathrm{n}-\mathrm{k})!}
$$

or

$$
P(n, k)=\frac{n!}{(n-k)!}
$$

where n is the number of total elements, and k is the number of elements selected.

Remember, if we ordered all 8 dogs, it would be 8 !
(8 choices, 7 choices,.. until we ran out of dogs..)
$8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1$
However, that does too much. We only want $8 \times 7 \times 6$ (for 3 medals). How can we "stop" the factorial at 5 ?

Notice how we want to get rid of $5 \times 4 \times 3 \times 2 \times 1$. What's another expression for this? 5 !

So, if we write $\frac{8!}{5!}$, we'll end up $8 \times 7 \times 6 \quad \frac{8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{5 \times 4 \times 3 \times 2 \times 1}=336$
Reasoning: And, why did we use 5? Because, it was the number of dogs left over after we picked the 3 winners. In other words, the order of the 5 remaining didn't matter!

$$
\frac{8!}{(8-3)!}
$$

"Use the first k numbers of n "

$$
\frac{\mathrm{n}!}{(\mathrm{n}-\mathrm{k})!}
$$

Now, combinations.
Suppose instead of gold, silver, and bronze medals, we award milk bones to the top 3 dogs.
How many ways can I award 3 milk bones to 8 dogs?
In this case, order does not matter. You can mix up the top 3 finishers, and each still gets a milk bone.
Assume Astro, Buster, and Chester are the top 3 dogs again. If I give a milk bone to $\mathrm{A}, \mathrm{B}, \mathrm{C}$, it's the same as giving a milk bone to B, A, and then C. $1 \mathrm{st}, 2 \mathrm{nd}$, or 3 rd : they all get the same prize.

This raises an interesting point: we have redundancies.
How many do we have?
And, how can we modify the permutation formula to eliminate them?

Let's figure out how many ways we can arrange Astro, Buster, and Chester:

```
ABC ACB BAC BCA CAB CBA }3!=6\quad\mathrm{ A permutation!
```

So, if we have 3 milk bones to give away, there will be 6 variations for every three dogs we pick.
Therefore, if we want to figure out how many combinations we have, we must determine the number of permuations and divide it by all the redundancies.

In this case, we have 336 permutations, and we divide by 6 to eliminate all the extras.
$\frac{336}{6}=56$
${ }_{\mathrm{n}} \mathrm{C}_{\mathrm{k}}=\mathrm{C}(\mathrm{n}, \mathrm{k})=\frac{\mathrm{P}(\mathrm{n}, \mathrm{k})}{(\mathrm{k}!)}$
which means "Find all the ways to pick k people from n , and divide by the k ! variants"

$$
{ }_{n} C_{k}=\frac{n!}{(n-k)!k!}
$$

Examples of combinations (order does not matter) and permutations (arrangements).

Picking a team of 3 people from a group of 10 .

$$
\text { Combination: } \quad \mathrm{C}(10,3)=\frac{10!}{7!3!}=120
$$

Selecting a President, VP and Waterboy from 10 applicants.

$$
\text { Permutation: } P(10,3)=\frac{10!}{7!}=720
$$

Choosing 2 desserts from a menu of 8 choices.

$$
\text { Combination: } \mathrm{C}(8,2)=\frac{8!}{6!2!}=28
$$

Ranking your 4 favorite desserts from a menu of 8 choices.

$$
\text { Permutation: } P(8,4)=8 \times 7 \times 6 \times 5=1680
$$

So, let's return to the original question: Why is this NOT a combination lock?

Because it's a permutation lock!

For this lock, order matters.
Example: If I told you the 3 numbers to open the lock are 14-22-24, you would need the order. 14-22-24 14-24-22 etc.. are all different arrangements.

Incidentally, there are 40 numbers on this lock. (Assuming a number may only be used once,)

```
\(\#\) of permutations \(=P(40,3)=40 \times 39 \times 38=59,280\) レ/
\(\#\) of combinations \(=C(40,3)=9880\)
```

Summary notes:
"A permutation is an ordered combination"
Or, to help remember, think "Permutation ---> Position"
Rather than memorize the formulas, try to understand how and why they work.
And, remember, a set of numbers will have fewer combinations than permutations.

Suppose the lock company manufactured locks with "combinations" (permutations) that may have repeating numbers, such as 22-22-30? There would be more possibilities. How many more?

There are basically 2 types of permutation:

1) repetition is allowed: such as the example above ' 22 ' is used twice.
2) no repetition: for example, the first three people in a running race. You can't finish 1 st and 2 nd.

Permutations that allow repetition:

When you have n things to choose from, you'll have n choices each time.

When making r choices from n elements, the number of permutations is

$$
\mathrm{n} \cdot \mathrm{n} \cdot \ldots(\mathrm{r} \text { times })=\mathrm{n}^{\mathrm{r}}
$$

There will be n possibilities for the first choice. THEN, again there will be n possibilities for the 2 nd choice. And, so on..

Example: In the lock, there are 40 numbers to select $(0,1,2, \ldots, 39)$.
If you can set the order AND can repeat numbers, then the number of possibilities are:
40^{3}
$40 \times 40 \times 40=64,000$ permutations

Permutations WITHOUT Repetition:

$$
{ }_{n} P_{k}=P(n, k)=\frac{n!}{(n-r)!}
$$

Suppose the lock did not allow numbers to be repeated.
There would be $40 \times 39 \times 38=59,280$ permutations
40 choices for the 1 st number.
39 remaining choices for the 2 nd number.
38 remaining choices for the 3 rd number.
Note: $0!=1 \quad$ It may seem odd that multiplying no numbers together gets you 1 , but it's accepted that 0 ! is 1 . One reason: 0 ! is in the denominator, the equation would be undefined. Letting $0!=1$ fixes that. Also, consider this: how many ways can you arrange nothing? One.

Combinations without repetition:

We've learned combinations are permutations/redundancies.

$$
{ }_{\mathrm{n}} \mathrm{C}_{\mathrm{k}}=\mathrm{C}(\mathrm{n}, \mathrm{k})=\frac{\mathrm{n}!}{(\mathrm{n}-\mathrm{k})!\mathrm{k}!}
$$

Example: Assuming you have 16 pool balls (7 stripes, 7 solids, the 8 ball, and the cue ball), how many ways could you select 3 balls?

$$
\frac{16!}{13!3!}=\frac{16 \times 15 \times 14}{3 \times 2 \times 1}=560
$$

Now, assuming you have 16 pool balls. How many ways could you select 13 balls?

$$
\frac{16!}{3!13!}=560 \quad \begin{aligned}
& \text { It's the same answer! (this makes sense: choosing } 13 \text { balls is the same } \\
& \text { as not picking } 3 \text { balls) }
\end{aligned}
$$

Combinations with repetition:

Let's use another ice cream example. This time, you may order 2 scoops of vanilla and 1 scoop of chocolate -rather than having to choose 3 different flavors.

How many variations will there be?
Let's use letters to represent 5 flavors:

B	Banana
C	Chocolate
L	Lemon
S	Strawberry
V	Vanilla

Selections may be $\{\mathrm{c}, \mathrm{c}, \mathrm{c}\}$ (3 scoops of chocolate)
$\{\mathrm{b}, 1, \mathrm{v}\} \quad$ (one each of banana, lemon, and vanilla)
$\{\mathrm{b}, \mathrm{v}, \mathrm{v}\} \quad$ (one banana, 2 vanilla)
So, there are $\mathrm{n}=$ flavors to choose from
$r=3$ choices
flavors can be repeated
Order does not matter (combination) eg: $\{\mathrm{c}, 1, \mathrm{c}\}$ is the same as $\{1, \mathrm{c}, \mathrm{c}\}$
How do we count the possibilities?
Think about the ice cream being in a row of containers.
You could tell the ice cream man: "skip the 1st, then 3 scoops (chocolate), then skip the next 3 containers" or,
" 2 scoops (banana), skip, skip, 1 scoop (strawberry), skip"
Notice, each example has 7 "moves".
(skip, scoop, scoop, scoop, skip, skip, skip)
or,
(scoop, scoop, skip, skip, scoop, skip)
So, instead of worrying about different flavors, we have a simpler problem:
"how many different ways can you arrange 'skips and scoops'?"
There will aways be 3 scoops (of ice cream) and 4 skips (to get from the 1st container to the 5th)!!
In essence, there are $3+(5-1)$ positions and we want to choose 3 of them.

Then, since this is a combination, we must eliminate the redundancies: divide the permuation by

$$
(n+r-1-r)!\cdots(n-1)!
$$

$\frac{(n+r-1)!}{r!(n-1)!}$ where n is the number of things to choose from, and you choose r of them. (repetition allowed, combination)

So, the number of ways to select 3 scoops from the ice cream shop are:

$$
\frac{(5+3-1)!}{3!(5-1)!}=\frac{7!}{3!4!}=\frac{5040}{6 \times 24}=35
$$

Example: If there are 10 types of donuts on the menu and you want 3 donuts, how many choices can you make?

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{n}=10 \\
\mathrm{r}=3
\end{array} \quad \frac{(10+3-1)!}{3!(10-1)!}=\frac{12!}{3!9!}=\frac{12 \times 11 \times 10}{3 \times 2 \times 1}=220 \text { choices }
\end{aligned}
$$

"The Complement Principle" --- If $\mathrm{A}=$ \# of outcomes that include A
then $\mathrm{A}+\overline{\mathrm{A}}=$ total possible outcomes
This is a useful concept, because it can simplify counting strategies.
Example: How many numbers between 1 and 9999 contain the number ' 7 '?
If we count them directly, we'd have to count numbers that include one ' 7 ', two ' 7 's, three '7's, and 7777.
$7,17,71,700,727,1723$, and on and on.... That is a multi-step, time consuming method.
OR, we can use "The Complement Principle"...

Total possible outcomes: 10,000 (there are 10,000 numbers between 1 and 9999)
Numbers that contain NO 7's: How many ways can we select a number without a seven?
View each digit as an individual choice.
First digit: 9 choices (any digit except 7)
Second digit: 9 choices
Third digit: 9 choices
Fourth digit: 9 choices
that contain no 7 's $=9 \times 9 \times 9 \times 9=6561$

Therefore, if there are 10,000 possible outcomes and 6561 do not contain a 7 ,
then 3439 contain at least one seven.
"Duplicate Elements are Combinations"
We know how to arrange different elements: n! Example: number of different 5-letter 'words' containing A B C D E is $5!=120$

But, suppose the set contains elements that are duplicates.
Example: How many ways can you arrange the letters A A B D D D E ?
Since the first A and second A are identical, $A_{1} A_{2} B C D D D E$ is the same as $A_{2} A_{1} B C D D D E$.
And, of course, all the D's could be switched without changing the appearance.
$\mathrm{AAD} \mathrm{BC} \mathrm{D}_{2} \mathrm{D}_{3} \mathrm{E}$ is the same as $\mathrm{AAD}_{2} \mathrm{BC} \mathrm{D}_{3} \mathrm{D}_{1} \mathrm{E}$
So, how do we eliminate the dupicates? Determine the number of repeats and divide them out of the permutations.

Total permutations: 8!
Number of A's that are repeats: 2 !
Number of D's that are repeats: 3 !

Total number of 'words' that can be

 made from the above letters is$$
\frac{8!}{2!3!}=3360
$$

Example: How many numbers contain three 1 's, one 2 , and one 3 ?
Total ways to arrange 5 numbers: 5 !
Since each number will contain three 1 's, we'll need to divide by 3 ! to eliminate the redundancies.

11123	11132	11213	11231	11312	11321
12113	12131	12311	13112	13121	13211
21113	21131	21311	23111		
31112	31121	31211	32111		

I. Determine whether the following are combinations or permutations:

1) phone number
2) 5 cards in a poker hand
3) numbers needed to open a combination lock
4) lottery numbers
5) social security number
6) license plate
II. Application

There are 9 members of a math club: five boys and 4 girls...
Three of them are going to represent the club at the national convention.
How many different delegations could be sent if
a) 3 members are randomly selected
b) 2 boys and 1 girl are selected
III. Probability

Using each letter A, B, C, D, and E once, what is the probability
a 'word' has a first letter A and last letter consonant?
I. Determine whether the following are combinations or permutations:

ANSWERS
Counting Questions

1) phone number permutation (order matters: $555-6778$ is a different phone number than $555-8776$)
2) 5 cards in a poker hand combination (It doesn't matter how the cards are held)
3) numbers needed to open a combination lock permutation (if 21-4-8 is the code, then 4-21-8 will not open the lock!)
4) lottery numbers combination
5) social security number permutation
6) license plate permutation
II. Application

There are 9 members of a math club: five boys and 4 girls...
Three of them are going to represent the club at the national convention.
How many different delegations could be sent if
a) 3 members are randomly selected

$$
\text { Since order does not matter, this is a combination... } \quad 9_{3} \mathrm{C}_{3}=\frac{9!}{6!3!}=\frac{9 \cdot 8 \cdot 7 \cdot 6!}{6!\cdot 3 \cdot 2 \cdot 1}=\begin{gathered}
84 \text { possible } \\
\text { delegations }
\end{gathered}
$$

b) 2 boys and 1 girl are selected

1 girl
4
choices

$$
\frac{5!}{3!2!} \cdot \frac{4!}{3!1!}
$$

2 boys	1 girl
$5 \quad 4$	4
choices remaining choices	choices
divided by two (because order doesn't matter, so we eliminate double counting)	$=40$

III. Probability

Using each letter A, B, C, D, and E once, what is the probability a 'word' has a first letter A and last letter consonant?

Method 1: Using probability
$\mathrm{P}(1$ st letter A and last letter B, C, orD $)=$

$$
\frac{1}{5} \cdot \frac{3}{4}=\frac{3}{20}
$$

Method 2: Combinations/Permutations

Number of 'words' that are correct $=$ Number of 5-letter words ' A ' 'consonant' the rest
$\frac{{ }_{1} \mathrm{C}_{1} \cdot{ }_{3} \mathrm{C}_{1} \cdot 3!}{5!}=\frac{18}{120}=\frac{3}{20}$
'A'
one choice

Practice Puzzle on the next page $-\rightarrow$

Bad News: You're stranded on a desert island.
Good News: You found a treasure chest!!
Bad News: The treasure chest has a lock on it.
Good News: There is a note attached to the lock offering clues to the combination.

$$
\begin{aligned}
& \text { "Congratulations, you found the chest... } \\
& \text { To get the treasure, here's my test..." }
\end{aligned}
$$

Solve the eight problems below. Then, add the answers together. The 6 -digit sum will open the lock.

1) The number of ways to arrange 5 chairs in a row.
2) Your school locker has 4 digits on the lock.

How many possibilities are there? (each digit can be 0-9)
3) How many different license plates can be made using the following format: letter, letter, number, number, number?

$$
\text { EX: } \begin{array}{|l|}
\hline
\end{array}
$$

4) At the pizza parlor, there are 3 available toppings on the menu: sausage, pepperoni, and mushroom. How many different pizzas can they offer?
5) In your closet, you have 3 ties, 4 shirts, and 3 pairs of pants. How many different outfits could you make (consisting of 1 tie, 1 shirt, and 1 pair of pants)?
6) At the Kentucky Derby, there are 12 horses racing. You must try to pick the 3 horses that will finish in 1st, 2nd, and 3rd. How many choices (permutations) are there?
7) While playing scrabble, you draw $X, M, N, 2$ S's, and 2 T's.. Although you cannot make any real words (no vowels!), how many different 7 -letter arrangements can you make?
8) There are 10 boys on the varsity basketball team. The coach must divide them into 2 teams for a scrimmage. How many different ways can the boys be grouped?

\qquad
\qquad

Treasure Chest \& the Combination/Permutation Lock

Bad News: You're stranded on a desert island.

SOLUTIONS

Good News: You found a treasure chest!!
Bad News: The treasure chest has a lock on it.
Good News: There is a note attached to the lock offering clues to the combination.

$$
\begin{aligned}
& \text { 'Congratulations, you found the chest... } \\
& \text { To get the treasure, here's my test..." }
\end{aligned}
$$

Solve the eight problems below. Then, add the answers together. The 6 -digit sum will open the lock.

1) The number of ways to arrange 5 chairs in a row.

$$
5!\quad 5 \times 4 \times 3 \times 2 \times 1=120
$$

2) Your school locker has 4 digits on the lock.

How many possibilities are there? (each digit can be 0-9)

Each position (digit) has 10 possibilities: 0-9 So, $10 \times 10 \times 10 \times 10=10,000$
(also, consider every number from 0000 to 9999 ..)
3) How many different license plates can be made using the following
format: letter, letter, number, number, number?

EX: | B X 263 |
| :--- |

$$
26 \times 26 \times 10 \times 10 \times 10=676,000
$$

4) At the pizza parlor, there are 3 available toppings on the menu: sausage, pepperoni, and mushroom. How many different pizzas can they offer? 8 different pizzas

Five "slots": 1st: 26 choices (26 letters in
2nd: 26 choices the alphabet) 3rd: 10 choices 4th: 10 choices (number 5th: 10 choices

0 toppings: 1 way (plain cheese) 1 topping: 3 ways (S, P, M only)
2 toppings: 3 combinations
(S/P, S/M, P/M)
3 toppings: 1 combination of all 3
5) In your closet, you have 3 ties, 4 shirts, and 3 pairs of pants. How many different outfits could you make (consisting of 1 tie, 1 shirt, and 1 pair of pants)?

$$
3 \times 4 \times 3=36 \text { possibilities }
$$36

6) At the Kentucky Derby, there are 12 horses racing. You must try to pick the 3 horses that will finish in 1st, 2nd, and 3rd. How many choices (permutations) are there?
${ }_{12} \mathrm{P}_{3}=\frac{12!}{9!}=\frac{12 \times 11 \times 10 \times 9!}{9!}=1320$
Consider each place a "slot".. 1 st slot: 12 choices. 2nd slot: select from 11 remaining horses. 3rd slot: choose one from 10 remaining horses.
7) While playing scrabble, you draw $X, M, N, 2$ S's, and 2 T's..

Although you cannot make any real words (no vowels!), how many
different 7 -letter arrangements can you make?
We must eliminate the "double counting":
There are seven "slots" -- \# of permutations $=7$!
But, there are redundancies! 2 S 's and 2 T's..
(ex: $\mathrm{S}_{1} \mathrm{~S}_{2} \mathrm{~T}_{1} \mathrm{XMN} \mathrm{T}_{2}$ is the same as $\mathrm{S}_{2} \mathrm{~S}_{1} \mathrm{~T}_{1} \mathrm{XMN} \mathrm{T}_{2}$)
$\frac{7!}{2!2!}=1260$
$12 \times 11 \times 10=1320$
) There are 10 boys on the varsity basketball team. The coach must
$2!$ eliminates the S redundancies
divide them into 2 teams for a scrimmage. How many different ways can the boys be grouped?
Reasoning: When dividing the 10 boys into 2 teams, we're merely selecting 5 boys (because, the remaining 5 are all put on the other team). So, selecting 5 boys: $10 \times 9 \times 8 \times 7 \times 6 .$. (the other 5 are irrelevant).
Then, regarding the 5 boys we chose: it's a combination (because the order of selection doesn't matter!)
Ex: Steve, John, Al, Kevin, Jack is the same as Steve, Al, John, Jack, Kevin...
So, to eliminate the repetition, divide by all the extra combinations of the five boys: 5 !

$$
\begin{aligned}
&{ }_{10} \mathrm{C}_{5}=\frac{10!}{5!5!}=252 \\
& \text { Add the } 8 \text { solutions: }
\end{aligned}
$$

120
10,000
676,000
8
36
1320
1260
$+\quad 252$
688996

Thanks for visiting. (Hope it helped!)
Find more resources at Mathplane.com
Good luck!

2 more counting questions:

1) If you listed all whole numbers between 1 and 100, how many 7 's would appear in the list?
2) How many integers between 1 and 1000 contain at least one 7 ?

$\begin{array}{lllll}7 & 7 & 7 & 7 & 7\end{array}$

Counting 7's

1) If you listed all whole numbers between 1 and 1000, how many 7 's would appear in the list?

Answer: 300
there will be 1007 's in the ones place
100 7's in the tens place
1007 's in the hundreds place
2) How many integers between 1 and 1000 contain at least one 7 ?

$$
\begin{aligned}
& \text { between } 1 \text { and } 100: 19 \\
& 101 \text { and } 200: 19 \\
& 201 \text { and } 300: 19 \\
& 301 \text { and } 400: 19 \\
& 401 \text { and } 500: 19 \\
& 501 \text { and } 600: 19 \\
& 601 \text { and } 699: 19 \\
& 700 \text { and } 799: 100 \\
& 800 \text { (all of them have a seven) } \\
& 901 \text { and } 1000: 19
\end{aligned}
$$

Answer: 271

