Circles and Inscribed Figures

Notes, Examples, and Exercises (with Solutions)

Topics include Arcs, Angles, Chords, Secants, Tangents, Quadrilaterals, and more.

Circles and Inscribed Figures: Notes and Examples
Inscribed Angle
The vertex of an inscribed angle lies on the circle.

measure of angle $=\frac{1}{2}$ (intercepted arc)

Not inscribed angle (vertex is not on circumference of the circle)

Inscribed Polygon

A polygon is inscribed if every vertex lies on the circle.

The pentagon is inside the circle, but it is not inscribed in the circle.

Inscribed vs. Circumscribed

Examples:

The rectangle is inscribed in the circle
OR
The circle is circumscribed about the rectangle

The circle is inscribed in the regular hexagon.
OR,
A regular hexagon circumscribed about a circle.

Example: What is the angle measure of arc A?

If an inscribed angle is 25 degrees, then the corresponding arc on the circle is 50 degrees.
And, since it's a semi-circle, the remainder is 130°

Example: What is the measure of angle C?

C is an inscribed angle.
The corresponding arc on the circle is $(85+70)=155$ degrees.
Therefore, the inscribed angle is $\frac{1}{2}(155)=77.5$ degrees

Example: A regular hexagon is inscribed in a circle. If the perimeter of the hexagon is 36 , what is the distance from the center of the circle to each side?

Since perimeter is 36 , each side is $6 \ldots$
The measure of each exterior angle of regular hexagon is $360 / 6=60$ degrees..
So, measure of each interior angle is 120 degrees..
Therefore, the radius of the circle will be 6 and the distance to each side is $3 \sqrt{3}$

Application:

If one side of an inscribed triangle is the diameter of a circle, then it must be a right triangle!

central angle: angle equals arc

Angle-Arc Relationships

$$
\begin{gathered}
\widehat{\mathrm{AB}}=135^{\circ} \\
\angle \mathrm{AOB}=135^{\circ}
\end{gathered}
$$

Central Angle: The vertex is on the center of the circle

inscribed angle: angle $=1 / 2$ arc

$\widehat{\mathrm{CD}}=160^{\circ}$ $\angle \mathrm{CED}=80^{\circ}$

Inscribed Angle: The vertex lies on the circle

chord-chord: $1 / 2$ (sum of arcs)

$$
\left.\angle \mathrm{HAM}=\frac{1}{2} \widehat{(\mathrm{JK}}-\widehat{\mathrm{HM}}\right)
$$ big arc - small arc

$=\frac{1}{2}\left(76^{\circ}\right)=38^{\circ}$
secant-secant: $1 / 2$ (difference of arcs)

tangent-chord: angle $=1 / 2$ arc

similar to secant-secant...

minor arc DE is 150
major arc DLE is 210 ($360-150$)
$\frac{1}{2}(210-150)=30^{\circ}$
observation/shortcut: exterior angle is supplement to minor arc!
A and E are points of tangency

$$
\begin{aligned}
& \widehat{\mathrm{AE}}=112^{\circ} \\
& \widehat{\mathrm{BC}}=70^{\circ} \\
& \widehat{\mathrm{AB}}=38^{\circ}
\end{aligned}
$$

Determine all of the numbered angles!

A and E are points of tangency

$$
\begin{aligned}
& \overparen{\mathrm{AE}}=112^{\circ} \\
& \widehat{\mathrm{BC}}=70^{\circ} \\
& \overparen{\mathrm{AB}}=38^{\circ}
\end{aligned}
$$

$\mathrm{DE}+\mathrm{AE}=180$ (semicircle)

1) $68^{\circ} \quad$ (central angle)
$\mathrm{AB}+\mathrm{BC}+\mathrm{CD}=180$ (sum of angles is semicircle)
2) 90° (inscribed angle; also, triangle inscribed in a semicircle is a right triangle)
3) 35° (inscribed angle $--1 / 2$ of arc $\overparen{\mathrm{BC}}$)
4) 55° (chord-chord theorem $--1 / 2(\overparen{\mathrm{AB}}+\overparen{\mathrm{CD}})$)
5) $90^{\circ} \quad$ (tangent and radius form right angle)
6) 19° (tangent-secant theorem)
7) 56° (inscribed angle $--1 / 2(\overparen{\mathrm{AE}})$)
8) 19° (inscribed angle $--1 / 2(\widehat{\mathrm{AB}})$)
9) 111° (chord-chord theorem $--\quad 1 / 2(\widehat{C D}+\overparen{\mathrm{EAB}})$)

Note: To solve or to check answers, consider properties of angles and triangles. sum of interior angles of triangle $=180^{\circ}$ vertical angles congruent supplementary angles
11) 36° (inscribed angle)
2) $20^{\circ} \quad$ (sum of interior angles of triangle)
also, we know angle 6 is 90 degrees and the angle on the other side is
$1 / 2(68+72)=70^{\circ} \ldots$
therefore, angle 2 is 20°
$90+20+70=180^{\circ}$

Practice Test - \rightarrow

Read carefully, and answer the following:

1) A square is inscribed in a circle. If the diameter of the circle is 20 feet, what is the area of the square?

2) A parallelogram with sides 4 and 6 is inscribed in a circle.

Find the radius of the circle.
(Hint: The parallelogram must be a rectangle!)
3) QUAD is a quadrilateral inscribed in circle O.

What is the measure(s) of angle Q ?

Circles and Inscribed Figures
Read carefully, and answer the following:
4) Triangle TRI is inscribed in circle A

$$
\begin{aligned}
& \widehat{\mathrm{TR}}=120^{\circ} \\
& \overline{\mathrm{TI}}=10
\end{aligned}
$$

a) what is the measure of \angle ATR ?
b) what is the perimeter of $\triangle \mathrm{TRI}$?

5) In the figure, $\angle \mathrm{A}=36^{\circ}$
a) find $\angle B$
b) find $\overparen{\mathrm{DC}}$

6) In the figure, central angle $\angle \mathrm{JOK}=40^{\circ}$

$$
\overline{\mathrm{OK}}=14
$$

a) find the measure of $\angle \mathrm{LJO}$
b) determine the arc length of $\overparen{\mathrm{JL}}$

Circles and Inscribed Figures

7) What is the measure of angle B ?

8) Given: Circle O

$$
\begin{gathered}
\angle \mathrm{AOB}=74^{\circ} \\
\text { What is } \angle \mathrm{ACB} ?
\end{gathered}
$$

9) What is the radius of a circle inscribed in a 12-16-20 right triangle?

Circles and Inscribed figures

10) What is the degree measure of $\widetilde{\mathrm{ST}}$?

11) Find $\angle \mathrm{HOD}$

12) Determine a, b, and c

13) A circle with radius 10 is inscribed in a regular hexagon and circumscribed about another regular hexagon.

What is the ratio of the smaller hexagon's area to the larger hexagon's area?
14) Parallelogram GRAM is inscribed in the circle.

$$
\begin{aligned}
& \widehat{\mathrm{mGR}}=4 \mathrm{x}+25 \\
& \widehat{\mathrm{mRA}}=7 \mathrm{x}-43 \\
& \overline{\mathrm{GM}}=8 \\
& \overline{\mathrm{MA}}=15 \\
& \text { a) Find } \widehat{\mathrm{mGR}}
\end{aligned}
$$

b) Find the arc length $\widehat{G R}$
15) Find x :

16) The rhombus is 'inscribed' in the circle.

What is the measure of angle HRM ?

Letter Key:
$\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0\end{array}$
B E G I L P R T U Y

1) π is approximately \qquad
2) Area of shaded region (in units ${ }^{2}$)

3.

3) Length of X :

4) $\frac{\text { Area of Circle } \mathrm{O}}{\text { Perimeter of circle } \mathrm{O}}=$

5) Find the arc length of $\overparen{\mathrm{BC}}$

6)

7) Find the length of Y

\qquad
8) Find the
length of $\overline{\mathrm{MN}}$

Area of Circle $\mathrm{M}=16 \pi^{\prime}$ Circumference of Circle $\mathrm{N}=6 \pi^{-}$
9) Area of square $=400 \mathrm{sq}$. units

Find the area of the inscribed circle.

10) Measure of the angle formed between the hour and minute hands at 2:00?
11) $\frac{\text { (Degrees in Circle) }}{\text { (Degrees in Right Angle) }}=$

Solutions $-\rightarrow$

Circles and Inscribed Figures

SOLUTIONS

1) A square is inscribed in a circle.

If the diameter of the circle is 20 feet, what is the area of the square?
The diameter of the circle is also the diagonal of the square.
The diagonal of a square is also the hypotenuse of a 45-45-90 right triangle.

The sides of the inscribed square are each $\frac{20}{\sqrt{2}}$ therefore, the area of the square is $\left\langle\frac{20}{\sqrt{2}}\right\}^{2}=200$ square feet

2) A parallelogram with sides 4 and 6 is inscribed in a circle.

Find the radius of the circle.
(Hint: The parallelogram must be a rectangle!)
Step 1: Draw a picture, labeling the given parts
Step 2: Recognizing that it's a rectangle, we can see the diagonal is also the diameter of the circle.

pythagorean theorem:

$$
\begin{aligned}
& (4)^{2}+(6)^{2}=d^{2} \\
& \quad d=\sqrt{52}=2 \sqrt{13}
\end{aligned}
$$

3) QUAD is a quadrilateral inscribed in circle O.

What is the measure(s) of angle Q ?

$$
\mathrm{m} \angle \mathrm{Q}+\mathrm{m} \angle \mathrm{~A}=180^{\circ}
$$

Note: opposite angles of inscribed quadrilateral

$$
\text { If } x=-7, \quad Q=117-2(-7)=131^{\circ},
$$ are supplementary!

$$
\begin{gathered}
(117-2 x)+\left(x^{2}\right)=180 \\
x^{2}-2 x-63=0 \\
(x-9)(x+7)=0 \\
x=-7,9
\end{gathered}
$$

$$
\begin{array}{r}
\text { If } x=9, \quad Q=117-2(9)=99^{\circ} \\
\text { and } A=(9)^{2}=81^{\circ}
\end{array}
$$

Read carefully, and answer the following:
4) Triangle TRI is inscribed in circle A

$$
\begin{aligned}
& \widehat{\mathrm{TR}}=120^{\circ} \\
& \overline{\mathrm{TI}}=10
\end{aligned}
$$

a) what is the measure of $\angle \mathrm{ATR}$?

30 degrees
b) what is the perimeter of \triangle TRI ?

$$
15+5 \sqrt{3}
$$

**Note: Any triangle inscribed in a semi-circle must be a right triangle!

5) In the figure, $\angle \mathrm{A}=36^{\circ}$
a) find $\angle B$

Since angle $A=36$, arc $D C=72$..
Then, since $\mathrm{DC}=72$, angle $\mathrm{B}=36$ degrees
b) find $\overparen{\mathrm{DC}}$
since $\angle \mathrm{DAC}$ is an inscribed angle,
$\overparen{\mathrm{DC}}$ is $2(\mathrm{DAC})=2(36)=72$ degrees \ldots
6) In the figure, central angle $\angle \mathrm{JOK}=40^{\circ}$

$$
\overline{\mathrm{OK}}=14
$$

a) find the measure of $\angle \mathrm{LJO}$

$$
\begin{aligned}
\mathrm{JOL}+\mathrm{JLO}+\mathrm{LJO} & =180 \text { degrees } \\
140 \quad 20 \quad 20 & =180
\end{aligned}
$$

b) determine the arc length of $\widehat{\mathrm{JL}}$

$$
\begin{aligned}
& \text { circumference of circle } \mathrm{O}=2 \uparrow \uparrow(\mathrm{r})=28 \uparrow \\
& \frac{\overparen{\mathrm{JL}}}{\text { circle }}=\frac{140}{360}=\frac{7}{18} \\
& \text { therefore, arc length of } \overparen{\mathrm{JL}}=\frac{7}{18} \cdot 28 \uparrow=\frac{98}{9} \uparrow
\end{aligned}
$$

JOK $=40$ (given)
$\mathrm{JOL}=140$ (supplementary angles)
$\mathrm{JLO}=20$
(inscribed angle $=1 / 2($ arc length $)$

7) What is the measure of angle B ?

Inscribed angle 40, so opposite arc is 80 degrees. $80+120=200$ degrees . Remainder of circle is 160 degrees.. Angle B = 1/2 (160)
8) Given: Circle O

$$
\begin{gathered}
\angle \mathrm{AOB}=74^{\circ} \\
\text { What is } \angle \mathrm{ACB} ?
\end{gathered}
$$

C

Since central angle AOB is 74 degrees, the angle measure of $\operatorname{arc} A B$ is 74 degrees..

Therefore, inscribed angle ACB is $1 / 2$ of $74 \ldots$

37 degrees...
9) What is the radius of a circle inscribed in a 12-16-20 right triangle?

$$
\begin{gathered}
x+(x+8)=16 \\
x=4 \\
\text { Radius }=4
\end{gathered}
$$

10) What is the degree measure of $\overparen{\mathrm{ST}}$?

11) Find $\angle \mathrm{HOD}$

12) Determine a, b, and c

13) A circle with radius 10 is inscribed in a regular hexagon and circumscribed about another regular hexagon.

What is the ratio of the smaller hexagon's area to the larger hexagon's area?
Step 1: Sketch the figure(s)
(suggestion: separate the hexagons)
Step 2: Find side lengths
exterior angles of regular hexagon are 60 degrees, so interior angles are 120 degrees...

Extract right triangles to find lengths

> small hexagon side: 10
> large hexagon side: $\frac{20 / \sqrt{3}}{3}$

Step 3: Determine ratios

$$
\frac{\text { small }}{\text { large }}=\frac{10}{\frac{20 \sqrt{3}}{3}}=\frac{30}{20 \sqrt{3}}=\frac{\sqrt{3}}{2}
$$

Then, the ratio of the areas is $\frac{3}{4}$

Since the quadrilateral is inscribed in the circle, a is supplementary to 68 .

$$
\begin{gathered}
\mathrm{a}=112 \\
76=\frac{1}{2}(108+\mathrm{c}) \\
\mathrm{c}=44 \\
112=\frac{1}{2}(108+\mathrm{b}) \\
\mathrm{b}=116
\end{gathered}
$$

(chord-chord theorem)

$$
\begin{aligned}
\angle \mathrm{COH} & =\frac{1}{2}(\overparen{\mathrm{CH}}+\overparen{\mathrm{RD}}) \\
& =\frac{1}{2}(108)=54
\end{aligned}
$$

COH is supplementary to HOD

$$
\angle \mathrm{HOD}=126^{\circ}
$$

$5 \sqrt{3} \underbrace{10}_{5} 30-60-90$ right triangles

14) Parallelogram GRAM is inscribed in the circle.

$$
\begin{aligned}
& \widehat{\mathrm{mGR}}=4 \mathrm{x}+25 \\
& \widehat{\mathrm{mRA}}=7 \mathrm{x}-43 \\
& \widehat{\mathrm{GM}}=8 \\
& \overline{\mathrm{MA}}=15
\end{aligned}
$$

a) Find $\widehat{m G R}$
b) Find the arc length $\widehat{G R}$

A parallelogram inscribed in a circle must be a rectangle!

$$
\begin{aligned}
& \widehat{\mathrm{mGR}}+\widehat{\mathrm{mRA}}=180 \\
& 4 \mathrm{x}+25+7 \mathrm{x}-43=180 \\
& 11 \mathrm{x}=198 \\
& \mathrm{x}=18 \\
& \mathrm{~m} \widehat{\mathrm{GR}}=4(18)+25=97^{\circ}
\end{aligned}
$$

Diameter RM is the hypotenuse of the legs 8 and 15 Therefore, diameter of circle is 17 .
Arc length $\mathrm{GR}=17 \uparrow \uparrow \frac{97}{360}$
15) Find x :

16) The rhombus is 'inscribed' in the circle.

What is the measure of angle HRM ?

Angle O and measure of arc HM are supplementary...
(external angle formed by 2 tangents is supplementary to arc)

$$
x+2 x=180
$$

Angle R is $1 / 2$ of HM
(inscribed angle)

Letter Key:
$\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 \\ & & G & \mathrm{I} & \mathrm{L} & \mathrm{P} & \mathrm{R} & \mathrm{T} & \mathrm{U} & \mathrm{Y}\end{array}$

1) π is approximately 3.14
2) Area of shaded region (in units ${ }^{2}$)

3) Length of X :

$$
\begin{aligned}
(4)(x) & =(3)(12) \\
x & =9
\end{aligned}
$$

Area ${ }_{\text {circle }}=\pi \mathrm{r}^{2}=25 \pi$ $\%$ of circle $=72 / 360=1 / 5$

$$
\text { Area of wedge }=1 / 5(25 \pi)
$$

$$
=5 \pi
$$

"BLUEBERRY PI"

4) $\frac{\text { Area of Circle } \mathrm{O}}{\text { Perimeter of circle } \mathrm{O}}=$

$$
\begin{aligned}
& \text { Area }_{\text {circle }}=\pi \mathrm{r}^{2}=16 \pi \text { feet }^{2} \\
& \text { Perimater }=2 \pi \mathrm{r}=8 \pi \text { feet } \quad \frac{16 \pi \text { feet }^{2}}{8 \pi \text { feet }}=2 \mathrm{ft}
\end{aligned}
$$

5) Find the arc length of $\overparen{\mathrm{BC}}$

$$
\begin{array}{ll}
\overline{\mathrm{AC}}=44 \text { feet } & \angle \mathrm{BOC}=90^{\circ} \\
\angle \mathrm{BAC}=45^{\circ} & \overparen{\mathrm{BC}}=\frac{90}{360}(44 \pi)
\end{array}
$$

$$
\begin{aligned}
& Y(Y+5)=(2 \sqrt{21})^{2} \\
& \mathrm{Y}^{2}+5 \mathrm{Y}=84 \\
& \mathrm{Y}^{2}+5 \mathrm{Y}-84=0 \\
& (\mathrm{Y}+12)(\mathrm{Y}-7)=0 \\
& \mathrm{Y}=-\mathrm{Z} \text { or } 7
\end{aligned}
$$

6)

$$
\frac{\mathrm{m} \angle \mathrm{~A}}{\mathrm{~m} \angle \mathrm{~B}}=\frac{\mathrm{X}}{(1 / 2) \mathrm{X}}=2
$$

$$
=11 T
$$

7) Find the length of Y

8) Find the length of $\overline{\mathrm{MN}}$

9) Area of square $=400$ sq. units Find the area of the inscribed circle.

$$
\begin{array}{ll}
\text { Area of Circle } \mathrm{M}=16 \pi & \text { radius } \mathrm{M}=4 \\
\text { Circumference of Circle } \mathrm{N}=6-\pi & \text { radius } \mathrm{N}=3 \\
\mathrm{MN}=7
\end{array}
$$

10) Measure of the angle formed between the hour and minute hands at 2:00?
11) $\frac{\text { (Degrees in Circle) }}{\text { (Degrees in Right Angle) }}=\frac{360}{90}=4$

$$
\begin{aligned}
& \text { diameter }=\text { square side }=20 \\
& \text { radius }=10 \\
& \text { are }=100 \\
& \frac{2}{12}=\frac{\mathrm{X}}{360} \\
& \mathrm{x}=60
\end{aligned}
$$

(angle is $2 / 12$ of clock)

Thanks for visiting. (Hope it helped!)
If you have questions, suggestions, or requests, let us know.
Enjoy

Also, at Facebook, Google+, Pinterest, and TES, and TeachersPayTeachers And, Mathplane Express for mobile and tablets at mathplane.ORG

