Geometry Circles Review (Honors)

Questions and Answers

Topics include arc length, common internal tangent length, secant-tangent theorems, chords, area, standard form of circle, and more.

Examples: Two coplaner circles -- with centers 15 units apart -- have radii 7 and 5 .
A) Find the length of the common internal tangent.

Step 3: Extract and solve the right triangle

Pythagorean Theorem:

$$
x=9
$$

B) Find the length of the common external tangent.

Step 1: Draw a sketch and label

Tangents and radii form right angles...

Step 2: Duplicate (transpose)
the missing length

The segment creates a rectangle and right triangle...

Step 3: Extract and solve the right triangle
$2 \xrightarrow[15]{15}$

Pythagorean Theorem:

$$
x=\sqrt{221}=14.87
$$

Example: OP and OR are external tangents
a) find $\mathrm{m} \angle \mathrm{POR}$

$$
\mathrm{m} \angle \mathrm{PCR}
$$

b) find the shaded area

Tangents and radii form right angles...
OP and OR are congruent (because they are external tangents that meet at a common point)
$\triangle \mathrm{POC}$ and $\triangle \mathrm{ROC}$ are congruent right triangles...
a)

$$
\begin{aligned}
& \qquad \begin{array}{l}
\sin (\angle \mathrm{POC})=\frac{3}{5} \\
\angle \mathrm{POC}=36.87^{\circ} \\
\text { then, } \angle \mathrm{POR}=2 \times \angle \mathrm{POC}=73.74^{\circ} \\
\cos (\angle \mathrm{PCO})=\frac{3}{5} \\
\text { then, } \angle \mathrm{PCR}=2 \times \angle \mathrm{PCO}=106.26^{\circ}
\end{array}
\end{aligned}
$$

b) To find the shaded area:

1) area of each right triangle: $\frac{1}{2}$ (base)(height) $=\frac{1}{2}(4)(3)=6$ so, area of the triangles is 12
2) area of each sector

$$
\begin{aligned}
& \text { Sector in circle O: } \frac{\ominus}{360} \pi \text { (radius) }^{2} \\
& \frac{73.74}{360} \pi(2)^{2}=2.57 \\
& \text { Sector in circle } \mathrm{C}: \frac{\ominus}{360} \Pi_{(\text {radius })}{ }^{2} \\
& \frac{106.26}{360} \pi(3)^{2}=8.35 \\
& \text { 3) Calculate the shaded area } \\
& \text { Shaded }=\text { total triangles }- \text { sectors } \\
& =(12)-(2.57+8.35)=1.08 \text { square units }
\end{aligned}
$$

Example: Given: Circle P and Circle Q are congruent

$$
\begin{aligned}
& \overline{\mathrm{MP}}=\overline{\mathrm{NQ}}=10 \\
& \overline{\mathrm{AB}}=80
\end{aligned}
$$

What is the distance between P and Q ?

Since circles P and Q are congruent, the radii are all congruent...
(Angle Bisector Theorem)
We know $P Q$ is a perpendicular bisector of $A B$..
Therefore, $\overline{\mathrm{AT}}=\overline{\mathrm{TB}}=40$
and $\triangle \mathrm{PAT}$ is a right triangle

$$
\begin{array}{ll}
\mathrm{x}^{2}+40^{2}=(\overline{\mathrm{PA}})^{2} & \overline{\mathrm{PA}} \text { and } \overline{\mathrm{PN}} \text { are congruent radii } \\
\mathrm{x}+\mathrm{x}+10=\overline{\mathrm{PN}} & \text { (in circle } \mathrm{P} \text {) }
\end{array}
$$

$$
\begin{aligned}
& x^{2}+1600=(2 x+10)^{2} \\
& x^{2}+1600=4 x^{2}+40 x+100 \\
& 3 x^{2}+40 x-1500=0 \\
& (3 x-50)(x+30)=0
\end{aligned}
$$

since length x cannot be negative, $\mathrm{x}=50 / 3$
therefore $\mathrm{PQ}=100 / 3$

Exercises $-\rightarrow$

1) Which chords (if any) are congruent?

2) Find L and A

3) Find Z :

4) What is the equation of a circle containing points $(1,1)(5,9)$ and $(13,4)$?
5) Find the perimeter.

6) Length of $\overline{\mathrm{AB}}$ is 18 .

The 3 semicircles are congruent.
What is the shaded area?

7) Find X :

8) What is $\overparen{m \mathrm{RT}}$?

What is the arc length of RT ?

9) Given: $\triangle \mathrm{ABC}$ is isosceles with base $\overline{\mathrm{BC}}$

$$
\begin{aligned}
& \overline{\mathrm{OM}} \perp \overline{\mathrm{AB}} \quad \overline{\mathrm{ON}} \perp \overline{\mathrm{AC}} \\
& \overline{\mathrm{OM}}=7 \mathrm{x}-10 \\
& \overline{\mathrm{AB}}=8 \mathrm{x}+2 \\
& \overline{\mathrm{ON}}=3 \mathrm{x}+6
\end{aligned}
$$

Find: the area of circle O
10) Given: $\angle \mathrm{BXA}=\angle \mathrm{CXD}$

$$
\angle \mathrm{xBC}=68^{\circ}
$$

Find: $\widehat{m \mathrm{CDA}}$

11) A wheel's spokes are 10 long.

And, the chords joining the spokes are $12^{\prime \prime}$.
If a bug lands on the middle of a chord, how far will it travel in one spin?

12) A 9×12 rectangle is inscribed in a circle.
13) What is the center and radius of the circle?

$$
x^{2}-8 x+y^{2}+14 y=-6
$$

14) Is $\angle \mathrm{AED}<,>$, or $=$ to $\angle \mathrm{ABD}$?

15) Find X and Y

mathplane.com
16) Quadrilateral ABCD is inscribed in the circle.

Find $\angle B C D$

17) What is radius R ?

18) Given: $\begin{array}{ll}\text { Circle } \mathrm{Q} \\ \mathrm{P}=36^{\circ}\end{array}$
$\overline{\mathrm{PS}} \perp \overline{\mathrm{SR}}$

Find: a) $\angle \mathrm{PSQ}$
b) $\angle \mathrm{R}$

19) $\begin{aligned} & \overline{\mathrm{AC}}=30 \\ & \overline{\mathrm{BD}}=20\end{aligned}$
$\overline{\mathrm{OE}}=8$

What is x ?

21) Circle O is inscribed in right triangle $A B C$.

If the radius is 4 and $A B$ is 20 , what is the perimeter?

22) The radii of two circles are 3 and 8 .

If the external tangent is 20 , what is the distance between the circles?
23) A circle with diameter of 40 has a chord with endpoints $(-3,2)$ and $(2,14)$ What is the distance of the chord from the center of the circle?

Below are 3 identical equilateral triangles -- each having side lengths 6 .
Determine each a) arc angle measure
b) arc length
A)

B)

C)

Solutions- \rightarrow

SOLUTIONS
Circles IV Review (Honors)
$\mathrm{DE}=\mathrm{GC}$
the diameters are the same!
(and, a diameter is a chord-- the longest possible chord in a circle)
while the other chords MIGHT be congruent, we don't KNOW...
2) Find L and A

Angle-Arc relationship: $\quad \frac{1}{2}(180-A)=50 \quad A=80$

Since $A=80$, the central angle is 80 , and it's supplement is 100

Triangle LMO is isosceles (because the radii are congruent)... Therefore, L and M are congruent angles... $\mathrm{L}=40$ 40 and 40

$$
\mathrm{L}=40
$$

Also, the large triangle has angles 40,50 and $90 \ldots$ (sum is 180)

Since a radius is perpendicular to a tangent line, the diagram is a right triangle:

$$
\begin{aligned}
22^{2}+30^{2} & =(\text { radius }+Z)^{2} \\
484+900 & =\text { (radius }+Z)^{2}
\end{aligned} \begin{gathered}
\text { Since radius is } 30 \\
Z=7.20
\end{gathered}
$$

radius $+Z=37.20$
Also, using tangent-secant power theorem:
$($ radius + radius $+Z)(Z)=22^{2}$
whole external part tangent squared
secant

$$
\begin{array}{r}
(30+30+Z)(Z)=484 \\
Z^{2}+60 Z-484=0
\end{array}
$$

(Quadratic formula)

$$
Z=7.20 \text { or }-67.20
$$

Z must be positive, so the answer is 7.20

Since we cannot assume that 2 of these points are endpoints of a diameter, we must solve the system..

Standard form of a circle: $\quad(x-h)^{2}+(y-k)^{2}=r^{2}$
Using Geometry: the perpendicular bisectors will intersect at the circumcenter (i.e the center of a circle that circumscribes the triangle)

The perpendicular bisector of $(1,1)$ and $(5,9)$
midpoint: $(3,5)$
slope of line: 2 slope of perpendicular bisector: $-1 / 2$

$$
\begin{gathered}
y-5=(-1 / 2)(x-3) \\
y=\frac{-1}{2} x+\frac{13}{2}
\end{gathered}
$$

The perpendicular bisector of $(1,1)$ and $(13,4)$
midpoint: $(7,5 / 2)$
slope of line: $\quad 1 / 4 \quad$ slope of perpendicular bisector: -4
$y-5 / 2=(-4)(x-7)$
$y=-4 x+30.5$

SOLUTIONS

the intersection of the perpendicular bisectors:

$$
\begin{aligned}
& \frac{-1}{2} x+\frac{13}{2}=-4 x+30.5 \\
& 3.5 x=24 \quad \text { then, } y=3.07 \\
& x=6.86
\end{aligned}
$$

center: $(6.86,3.07)$

Finally, what is the distance from $(6.86,3.07)$ to each of the 3 points?

$$
\begin{gathered}
\text { distance }=\sqrt{(6.86-1)^{2}+(3.07-1)^{2}}=6.21 \\
\text { radius }
\end{gathered}
$$

circle: $(x-6.86)^{2}+(y-3.07)^{2}=38.56$

arc length of semicircle: (1/2) TT (diameter)
diameter of inner semicircle is 6 diameter of outer semicircle is 16

$$
\left(\frac{1}{2}\right) \left\lvert\, 16 \pi^{-}+\left(\frac{1}{2}\right) 6 \pi^{-}+5+5\right.
$$

$$
11 T^{\lrcorner}+10
$$

6) Length of $\overline{\mathrm{AB}}$ is 18 .

The 3 semicircles are congruent.
What is the shaded area?

Area of semicircle $=(1 / 2) \pi(\text { radius })^{2}$
Large semicircle: $\left\{\left.\frac{1}{2} \right\rvert\, 81 \pi \sim=40.5 \pi^{\sim}\right.$
Small semicircle: $\left(\frac{1}{2}\right) 9 \pi^{\hookrightarrow}=4.5 \pi^{\hookrightarrow}$
Shaded area: $40.5 \pi^{\lrcorner}-3\left(4.5 \pi^{\lrcorner}\right)=27 \pi^{\sim}$
7) Find X :

all radii are congruent...
Pythagorean Theorem..

$$
\begin{aligned}
(\mathrm{a})^{2}+(6+8)^{2} & =17^{2} \\
\mathrm{a}^{2} & =93 \\
\mathrm{a} & =\sqrt{93} \\
\mathrm{X}=2 \sqrt{93} &
\end{aligned}
$$

8) What is $\overparen{m \mathrm{RT}}$?

What is the arc length of RT ?

Using trig ratios, determine central angle O...

$$
\operatorname{Sin}(O)=\frac{15}{17} \quad \text { angle } O=61.9^{\circ}
$$

Then, since OM is a perpendicular bisector, angle ROT is $2 \times 61.9=123.8^{\circ}$

Then, the arc length is $\frac{123.8}{360} \cdot\left(34 \mathrm{~T}^{-}\right)=36.7$
9) Given: $\triangle \mathrm{ABC}$ is isosceles with base BC
$\overline{\mathrm{OM}} \perp \overline{\mathrm{AB}} \quad \overline{\mathrm{ON}} \perp \overline{\mathrm{AC}}$

$$
\begin{aligned}
& \overline{\mathrm{OM}}=7 \mathrm{x}-10 \\
& \overline{\mathrm{AB}}=8 \mathrm{x}+22 \\
& \overline{\mathrm{ON}}=3 \mathrm{x}+6
\end{aligned}
$$

Find: the area of circle O

SOLUTIONS

Circles IV Review (Honors)

Step 1:
Find x
Since $A B C$ is isosceles, $A B \cong A C$..
If 2 chords are congruent, then the distance to the center is the same

$$
\text { Therefore, } \begin{array}{rlr}
\overline{\mathrm{OM}} & =\overline{\mathrm{ON}} \\
7 \mathrm{x}-10 & =3 \mathrm{x}+6 & \mathrm{x}=4 \\
\mathrm{OM} & =\mathrm{ON}=18
\end{array}
$$

Step 2: Find radius

Since $x=4, A B=8(4)+22=54$
Therefore, BM is 27
(note: the radius to chord is a perpendicular bisector.)

$$
\text { Pythagorean Theorem: } 18^{2}+27^{2}=\mathrm{OB}^{2}
$$

Step 3:
Find area

$\mathrm{OB}=32.45$
10)

$$
\begin{aligned}
& \angle \mathrm{BXA}=\angle \mathrm{CXD} \\
& \angle \mathrm{XBC}=68^{\circ}
\end{aligned}
$$

Step 1: Label the diagram
Since all radii are congruent, BX $\xlongequal{\cong}$ CX....
Therefore, angle $\mathrm{B}=$ angle C ($\mathrm{If} \cong$ sides, then \cong angles)

Find: $\mathrm{m} \overparen{\mathrm{CDA}}$
Step 2: Find angles and arcs
If B and C are 68 , then $\angle B X C=44$
and, angles BXA and CXD are 68° (because sum of angles between A and D must be 180)

Step 3: calculate major arc

$$
\begin{aligned}
& \widehat{C D}+\overparen{\mathrm{AD}}=\overparen{\mathrm{CDA}} \\
& 68+180=248
\end{aligned}
$$

11) A wheel's spokes are 10 " long.

And, the chords joining the spokes are 12 ".
If a bug lands on the middle of a chord, how far will it travel in one spin?

To find the distance the bug travels, we need to find the circumference of the "radius" from the bug to the center of the wheel...

The chord is $12^{\prime \prime}$, so the semi-chord is $6^{\prime \prime} \ldots$
And, the spokes are $10^{\prime \prime}$

Using Pythagorean Theorem, we
find the distance of the chord (ie bug)
to the center is $8^{\prime \prime}$--- radius $=8^{\prime \prime}$
Therefore, the bug will travel 2Π (radius)

12) A 9×12 rectangle is inscribed in a circle.

What is the circumference of the circle?

```
Circumference = 15 #
```

13) What is the center and radius of the circle?

$$
x^{2}-8 x+y^{2}+14 y=-6
$$

Note: the inscribed rectangle is divided into 2 right triangles, where the diameter is the hypotenuse...

Using Pythagorean Theorem, the diameter is 15
14) Is $\angle \mathrm{AED}<,>$, or $=$ to $\angle \mathrm{ABD}$?

Since $A B D$ is inscribed angle that intercepts arc $A D$ and $A E D$ is a central angle that intercepts arc $A D$, then ABD must be $1 / 2$ of AED !

15) Find X and Y

mathplane.com
$X+Y+144=360$$\rightarrow X+Y=216$
$\frac{1}{2}(\mathrm{Y}-\mathrm{X})=32 \quad$ "Tangent-Secant" Power Theorem

Sum of arcs in a circle is 360
$(Y-X=64$

Then, solve the system of equations:

$$
\begin{aligned}
& \mathrm{X}+\mathrm{Y}=216 \\
& \mathrm{Y}-\mathrm{X}=64 \\
& 2 \mathrm{Y}=280 \\
& \mathrm{Y}=140 \text { and } \mathrm{X}=76
\end{aligned}
$$

16) Quadrilateral $A B C D$ is inscribed in the circle.

Find $\angle B C D$

$$
\begin{aligned}
& \overparen{\mathrm{AB}}+\overparen{\mathrm{AD}}+\overparen{\mathrm{BC}}+\overparen{\mathrm{CD}}=360 \\
& \text { And arc } \overparen{\mathrm{BAD}}=2(23+5 \mathrm{x}) \\
& \quad \text { (inscribed angle) }
\end{aligned}
$$

17) What is radius R ?

Using Secant-Tangent Theorem)

$$
\begin{aligned}
(10)^{2} & =(7)(\mathrm{R}+\mathrm{R}+7) \\
100 & =14 \mathrm{R}+49 \\
\mathrm{R} & =51 / 14
\end{aligned}
$$

(Using Pythagorean Theorem)

$$
\begin{aligned}
\mathrm{R}^{2}+(10)^{2} & =(\mathrm{R}+7)^{2} \\
\dot{\mathrm{R}}^{2}+100 & =\mathrm{R}^{2}+14 \mathrm{R}+49 \\
51 & =14 \mathrm{R} \\
\mathrm{R} & =51 / 14
\end{aligned}
$$

18) Given: Circle Q
$\mathrm{P}=36^{\circ}$
$\overline{\mathrm{PS}} \perp \overline{\mathrm{SR}}$

Find: a) $\angle \mathrm{PSQ} 36^{\circ}$
b) $\angle \mathrm{R} \quad 54^{\circ}$

19) $\overline{\mathrm{AC}}=30$
$\overline{\mathrm{BD}}=20$
$\overline{\mathrm{OE}}=8$

What is x ?

Important: since $\mathrm{BD} \neq \mathrm{AC}$, the distances to the center are not equal

20) A circle is inscribed in a $21-28-35$ right triangle. What is the radius of the circle?

"Walk-around" or "Travel" problems...

21) Circle O is inscribed in right triangle $A B C$.

If the radius is 4 and $A B$ is 20 , what is the perimeter?

$$
\begin{gathered}
(x+4)^{2}+(24-x)^{2}=20^{2} \\
x^{2}+8 x+16+576-48 x+x^{2}=400 \\
2 x^{2}-40 x+192=0 \\
2\left(x^{2}-20 x+96\right)=0 \\
(x-8)(x-12)=0 \\
x=8 \text { or } 12
\end{gathered}
$$

22) The radii of two circles are 3 and 8 .

All radii are congruent...
Tangents are perpendicular to radii and point of tangency..

"transpose" the external tangent to create a rectangle and right triangle...

Solve the right triangle to answer the question!

$$
\begin{aligned}
(20)^{2}+(5)^{2} & =(3+x+8)^{2} \\
425 & =(3+x+8)^{2} \\
20.6 & =11+x \\
x & =9.6
\end{aligned}
$$

23) A circle with diameter of 40 has a chord with endpoints $(-3,2)$ and $(2,14)$. What is the distance of the chord from the center of the circle?

Using the distance formula, we find the length of the chord:
distance $=\sqrt{(-3-2)^{2}+(2-14)^{2}}$

$$
=\sqrt{25+144}=13
$$

And, the distance from chord to the center is a perpendicular bisector...

So, we know the radius is 20 and the $1 / 2$ chord is 6.5 ..

Then, Pythagorean Theorem will get the distance from chord to center...
$\mathrm{d}^{2}=(20)^{2}-(6.5)^{2}$

$$
\mathrm{d}=\sqrt{357.75} \quad \text { approx. } 18.91
$$

Determine each a) arc angle measure
b) arc length
A)

The altitudes are also angle bisectors (and medians...)
then, the congruent sides form the radii of a full circle...

120 degrees

B)

This arc is a semicircle where the diameter is the side of the triangle...

$$
180 \text { degrees }
$$

arc length of semicircle:
$\frac{1}{2} \cdot 2 \Pi(3)=3 \Pi$
radius

C)

In this case, 2 sides of the triangle are also the radii of the "full circle"

60 degrees

circumference of full circle is $12 T$

And, this arc is
 $1 / 6$ of the circle..

Thanks for visiting. Hope it helps!

If you have questions, suggestions, or requests, let us know.

 Cheers.

Also, at TeachersPayTeachers, Facebook, TES, Google +, and Pinterest

One more challenge question:
Given: 2 concentric circles
The chord of the outer circle is tangent to the inner circle
If the length of the chord is 70 , what is the area between the circles (i.e. the ring)?

Area of big circle - Area of small circle

$$
\begin{aligned}
& \Pi(\mathrm{r}+\mathrm{x})^{2}-\Pi(\mathrm{r})^{2} \\
& -\Pi\left(35^{2}+\mathrm{r}^{2}\right)-\Pi(\mathrm{r})^{2} \\
& 1225 \Pi+\Pi \mathrm{r}^{2}-\Pi(\mathrm{r})^{2}
\end{aligned}
$$

