Circles Introduction

Notes, examples, formulas, and practice questions

Topics include parts of a circle, arc length, sector area, and more.

Circle : definitions, notes and formulas

What is it? A circle is a shape consisting of points -- in the same plane -- that are equidistant from a center point.
Parts of a circle:
Radius (r): Distance from any point on the circle to the Center (c)
Diameter (d): Length of any line segment that connects two points on the circle AND passes through the center

Diameter $=2 \times$ Radius

The center is the midpoint of any diameter.

Area of the circle: π (radius) ${ }^{2}$

πr^{2}
Circumference: the "perimeter" of the circle: \prod^{\prime} (diameter)
$\pi \mathrm{d}$
$27{ }^{-1}$ (radius)
$2 \pi \mathrm{Tr}$
π is an irrational number approximately 3.14

Example: Given a circle with radius 6 inches
area $=\pi r^{2}=\pi(6 \text { inches })^{2}$
$=36 \pi$ "square inches
(approximately 113.1 sq. inches)
circumference $=\Pi^{\prime} \mathrm{d}=\Pi^{\prime}(12$ inches $)$
$=12 \pi$ inches
(approximately 37.7 inches)

Practice Exercise- -

Find the area and circumference of each circle.
1)

3)

5)

7)

2)

4)

Circumference \qquad

Area \qquad
6)

Circumference \qquad

Area \qquad
8)

SOLUTIONS

Circles Area and Circumference

1)

> radius: 4
> $\begin{gathered}\mathrm{C}=2 \pi \mathrm{r} \\ \mathrm{A}=\pi \mathrm{r}^{2}\end{gathered}$

Circumference $8 T T$ Area $16 \uparrow$
2)

center of circle is midpoint: $(2,3)$
radius: 5 diameter: 10

Circumference $10 \uparrow$

Area $\quad 25 T \uparrow$
$\mathrm{A}=\pi \mathrm{Tr}^{2} \quad \mathrm{C}=\pi \mathrm{d}$
4)

Area $\underline{ }$
6)

More notes, examples, and exercises- \rightarrow

Parts of a circle:
Sector: An area inside the circle bounded by 2 radii and an arc.
A portion of the circle (area)
Arc: A curved segment of the circle.
A portion of the circle (perimeter)
Sector Area $=($ portion of circle $)($ area of entire circle $)$
Arc Length $=($ portion of circle $)($ circumference of entire circle $)$

Example: radius $\mathrm{MO}=10$ units

$$
\text { central angle } \mathrm{MOL}=80^{\circ}
$$

area of circle $\mathrm{O}=100 \pi$
circumference of circle $\mathrm{O}=20 \pi$
"portion of the circle": $\frac{80^{\circ}}{360^{\circ}}=\frac{2}{9}$
therefore, sector area $=\frac{2}{9} \cdot 100 \pi$

$$
=69.8 \text { sq. units }
$$

(approximately)
arc length $=\frac{2}{9} \cdot 20 \pi$
$=13.96$ units (approximately)

$$
\frac{\begin{array}{l}
\text { measure of } \\
\text { central } \angle \mathrm{MOL}
\end{array}}{360^{\circ}}=\frac{\text { arc length } \overparen{\mathrm{ML}}}{\begin{array}{c}
\text { circumference } \\
\text { of circle O }
\end{array}}=\frac{\text { area of sector MOL }}{\text { area of circle O}}
$$

LOM is a sector of circle O
$\widehat{\mathrm{NP}}$ is an arc in circle O
$\widehat{\mathrm{LM}}$ is an arc in circle O

Arcs of the Circle

"Minor Arcs"
Lengths less than $1 / 2$ the perimeter of the circle

$$
\begin{aligned}
& \overparen{\mathrm{RS}}(\text { or } \overparen{\mathrm{SR}}) \\
& \widehat{\mathrm{ST}}(\text { or } \overparen{\mathrm{TS}}) \\
& \widehat{\mathrm{TR}}(\text { or } \overparen{\mathrm{RT}})
\end{aligned}
$$

"Major Arcs"
Arc lengths greater than $1 / 2$ the perimeter of the circle

$\widehat{\mathrm{RST}}$	(or TSR)
STR	(or $\widehat{\mathrm{RTS}}$)
TRS	(or SRT)

Note: Indicating the points in a specific order identifies the arc
Arc lengths $=1 / 2$ the perimeter are semi-circles

Circle Formulas, ratios and relationships

tangent line is perpendicular to the

$(\overline{\mathrm{VC}})(\overline{\mathrm{VC}})=(\overline{\mathrm{VA}})(\overline{\mathrm{VB}})$

$(\overline{\mathrm{VA}})(\overline{\mathrm{VB}})=(\overline{\mathrm{VD}})(\overline{\mathrm{VC}})$

$\angle \mathrm{KML}=1 / 2(\overparen{\mathrm{KL}}-\overparen{\mathrm{JP}})$

Tangent: a line (or curve or plane) that touches the circle at exactly one point
Chord: a line segment with endpoints on the circle
Secant: a line with two points on the circle

Example: Given circle O:

$\overline{\mathrm{FG}}$ is a tangent at point C
$\overline{\mathrm{AB}}$ is a chord
$\overleftrightarrow{\text { DE }}$ is a secant (through points D and E)
$\overline{\mathrm{DE}}$ is a chord

Concentric Circles

What are they? Circles that share a common center.

Example:

O and A are concentric
also,
O and T are overlapping (intersecting) circles

A and T are overlapping circles
note: any diameter of circle A would go through circle O and contain one diameter of circle O

$$
\begin{gathered}
(\mathrm{x}-\mathrm{h})^{2}+(\mathrm{y}-\mathrm{k})^{2}=\mathrm{r}^{2} \\
(\mathrm{~h}, \mathrm{k}) \text { is the center } \\
\mathrm{r} \text { is the radius }
\end{gathered}
$$

Example: What is the equation of a circle with diameter 20 and its center translated 8 units to the left and 11 units up from the origin?
since diameter is 20 , radius is $10 \ldots$
origin shifted 8 units to the left: $\quad(-8$
origin shifted 11 units up: $\quad(-8,11)$

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

$$
(x+8)^{2}+(y-11)^{2}=100
$$

$(-18,11)$

Example: A circle's diameter has endpoints $(1,4)$ and (7, -4). What is the equation of the circle?

To determine the equation of a circle, we need the center and the radius.
Center is the midpoint of the diameter's endpoints.

$$
(4,0)
$$

The radius is $1 / 2$ the length of the diameter...
Using the distance formula to find the length:

$$
\sqrt{36+64}=10
$$

Radius: 5
Center (h, k): $(4,0)$
(to check, plug in both endpoints and see if they work in the equation)

Practice Questions $-\rightarrow$

I. Identifying parts

Write the letter(s) that describe the parts of the circle:
a) Center: A
b) Chord:
c) Secant:
d) Tangent:
e) A radius:
f) Diameter:
g) A minor arc:
h) A major arc:

II. Circumference and Area

Determine the circumference and area of each circle:
a) radius $=4$ feet
b) diameter $=10$ inches
c) endpoints of the diameter:
$(2,0)$ and $(-4,0)$

Sector area $\mathrm{A}=$ Arc length $B=$
b)

Sector area $\mathrm{A}=$
Arc length $B=$
d)

Sector area $A=$
Arc length $B=$
a) Given: circle with center O containing points A and B

$$
\text { arc length of } \widehat{\mathrm{AB}}=7 \text { meters }
$$

circumference of circle $=70$ meters
What is the measure of central angle AOB ?
b) If the (sector) area of $1 / 6$ of a circle is 24π square feet, what is the radius of the circle?
c) In the following concentric circles, what is the area of the shaded region?

d) Find the measure of the shaded area:

e) Find the distance of the outer track:

f) The city wants to pave both sides of this winding road.

If the road is 10 feet wide, how long will this stretch of side pavement be?

V: Geometry Properties
a) Diameter $\overline{\mathrm{AB}}$ of circle O has the following points:

$$
\begin{aligned}
& A=(2,12) \\
& B=(-4,4)
\end{aligned}
$$

What is the radius?
What is the center?
Area of the circle?
Circumference of the circle?
Equation of the circle?
Sketch the graph.

b) What is the perimeter of the triangle?

c) What is the measure of $\angle \mathrm{S}$?

SOLUTIONS - -

SOLUTIONS

I. Identifying parts

Write the letter(s) that describe the parts of the circle: answers include the following:
a) Center: A
b) Chord: $\overline{\mathrm{BD}}$ (or $\overline{\mathrm{DB}}$); $\overline{\mathrm{CE}}$ (or $\overline{\mathrm{EC}}$); $\overline{\mathrm{BE}}$ (or $\overline{\mathrm{EB}}$)
c) Secant: $\overleftrightarrow{\mathrm{EC}}$ (or $\overleftrightarrow{\mathrm{CE}}$)
d) Tangent: $\overleftrightarrow{\mathrm{BF}}$ (or $\overleftrightarrow{\mathrm{FB}}$)
e) A radius: $\overline{\mathrm{AB}} \quad \overline{\mathrm{AC}} \quad \overline{\mathrm{AD}} \quad \overline{\mathrm{AE}}$
f) Diameter: $\overline{\mathrm{BE}}($ or $\overline{\mathrm{EB}})$
(note: it's the longest chord)
g) A minor arc: $\widehat{\mathrm{BC}} ; \widehat{\mathrm{CE}} ; \widehat{\mathrm{ED}} ; \widehat{\mathrm{DB}}$
h) A major arc: $\widehat{\mathrm{BCD}} \widehat{\mathrm{EBC}} \overparen{\mathrm{CDB}}$

(note: $\overparen{B E}$ is a semi-circle)

II. Circumference and Area

Determine the circumference and area of each circle:
a) radius $=4$ feet

Area $=\pi{ }^{\prime}(\text { radius })^{2}$

$$
\begin{aligned}
& \pi^{\prime} \cdot(4 \text { feet })^{2} \\
& 16 \pi^{\prime} \text { square feet }
\end{aligned}
$$

Circumference $=2 \pi \pi^{\prime}$ (radius)

$$
\frac{2 \pi^{\prime}(4 \text { feet })}{8 \pi^{\prime} \text { feet }}
$$

(approximately 25.1 feet)
b) $\begin{gathered}\text { diameter }=10 \text { inches } \\ \text { radius }=5 \text { inches } \\ \text { Area }=\pi^{\prime}(r)^{2} \\ \pi^{\prime}(5 \text { inches })^{2} \\ 25 \pi^{\prime} \text { square inches }\end{gathered}$

Circumference $=\pi T^{\prime}$ (diameter)

$$
\frac{\pi^{\prime}(10 \text { inches })}{10 T^{\prime} \text { inches }}
$$

(approximately 31.4 inches)
c) endpoints of the diameter: $(2,0)$ and $(-4,0)$
The length of the diameter is the distance between the endpoints: 6 units

$$
\begin{aligned}
& \mathrm{d}=6 \\
& \mathrm{r}=3
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{r}=3 \\
& \text { Area }=\pi^{\prime}(\mathrm{r})^{2} \\
&=9 \pi^{\prime}
\end{aligned}
$$

Circumference $=\pi^{\prime \prime}(\mathrm{d})$

$$
=6 \pi{ }^{\prime}
$$

Determine the arc length and/or sector area of the following:
a)
b)

Sector area $A=\frac{9}{2} \pi{ }^{\prime}$ sq. units
Arc length $B=3 \pi$ units
radius is 3 units
Arc B is a semi-circle

Portion: $\frac{1}{2}$

Area of entire circle:
$9 T T^{\prime}$
Sector area:

$$
\frac{1}{2} \cdot 9 \pi^{\prime}=
$$

$$
\frac{9}{2} \pi
$$

Sector area $A=36 \pi$
Arc length $B=6 \pi$
Circumference:
$2 T^{\prime}(12)=24 \pi T^{\prime}$
Arc
Length:
$\frac{1}{4} \cdot 24 T^{\prime}=6 T^{\prime}$
c)

Sector area $A=\frac{200}{3} \pi$ sq. feet
Arc length $\mathrm{B}=\frac{20}{3} \pi \pi^{\prime}$ feet
central angle $=60$ degrees
portion of the circle: $\frac{60}{360}=\frac{1}{6}$
area of circle: $T^{\prime}(r)^{2}=400 \pi T^{\prime}$ sq. feet
circumference: $2 T^{\prime}(r)=40 \pi T^{\prime}$ feet
**then, sector portions are $1 / 6$ of the values

Circumference of circle: $2\left(T^{\prime \prime}\right) 3=6 T^{\prime}$

$$
\text { Arc length: } \frac{1}{2} \cdot 6 \pi^{\prime}=3 \pi^{\prime \prime}
$$

d)

portion: $\frac{160^{\circ}}{360^{\circ}}=\frac{4}{9}$
area $=100 \pi T^{\prime}$
sector area:

$$
100 \pi \cdot \frac{4}{9}=\frac{400}{9} \pi
$$

circumference $=20 \pi$ arc length:

$$
20 \pi \cdot \frac{4}{9}=\frac{80}{9} \pi
$$

a) Given: circle with center O containing points A and B
arc length of $\widehat{A B}=7$ meters
circumference of circle $=70$ meters
What is the measure of central angle $A O B$?
since the entire circumference is 70 meters, the arc AB (7 meters) is

$$
\frac{7}{70}=\frac{1}{10} \text { of the entire circumference.. }
$$

therefore, the central angle must be $\frac{1}{10}$ of the entire circle...

$$
\frac{1}{10} \text { of } 360 \text { degrees is } 36^{\circ}
$$

b) If the (sector) area of $1 / 6$ of a circle is 24π square feet, what is the radius of the circle?

The sector is 24Π
If $1 / 6$ of the circle is 24Π, then the area of the entire circle is

$$
6 \times 24 \pi=144 \pi
$$

$$
\begin{array}{rlr}
\text { Area of circle }=\Pi r^{2} & =144 \pi \\
r^{2} & =144
\end{array} \quad \text { radius }=12 \text { feet }
$$

c) In the following concentric circles, what is the area of the shaded region?

d) Find the measure of the shaded area:

"middle triangle" area:

$$
12 \pi-9 \sqrt{3}
$$

e) Find the distance of the outer track:

$100+40 \uparrow$ T yards
approx. 225.7 yards
f) The city wants to pave both sides of this winding road. If the road is 10 feet wide, how long will this stretch of side pavement be?

mathplane.com

SOLUTIONS
"piece of pie" sector area:
$\frac{120^{\circ}}{360^{\circ}} \pi(6)^{2}=12 \pi$

(sides are 6, because all radii are congruent)

obtuse angle is 120 , because $30+30+120=180$

$$
\frac{1}{2}(6 \sqrt{3})(3)=9 \sqrt{3}
$$

The distance of the OUTER track is the lengths of 2 line segments and the circumference of a circle.
The 2 straight parts of the track: 50 yards each... 100 yards total

The combined turns form a circle with diameter 40 yards

If you rearrange the arcs in the road, they form a semicircle!

"outer" sidewalk..	Total paved sides:
$\frac{1}{2}$ (circumference) $=30 \pi$	$50 \Pi^{-}$

"inner" sidewalk $\frac{1}{2}$ (circumference)
$=20 \dagger$
a) Diameter $\overline{\mathrm{AB}}$ of circle O has the following points:

$$
\begin{aligned}
& \mathrm{A}=(2,12) \\
& \mathrm{B}=(-4,4)
\end{aligned}
$$

What is the radius? Distance/length of diameter: $\sqrt{(-4-2)^{2}+(4-12)^{2}}=10$
What is the center? Center is midpoint of the diameter: $(-1,8)$
Area of the circle? $\quad \uparrow$ (radius) $^{2}=25 \uparrow \uparrow$
Circumference of the circle? $\uparrow \uparrow($ diameter $)=10 \uparrow \uparrow$
Equation of the circle?

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

Sketch the graph.

$$
(x+1)^{2}+(y-8)^{2}=25
$$

b) What is the perimeter of the triangle?

Since 2 tangent segment meet at the same point, they are congruent.. Therefore, we can fill in the values for the triangle

The perimeter is 60 units
c) What is the measure of $\angle \mathrm{S}$?

Thanks for visiting. (Hope it helped!)
If you have questions, suggestions, or requests, let us know. Enjoy

Also, at Facebook, Google+, TeachersPayTeachers, and Pinterest

One more question!

How many different minor arcs are in the diagram?

(The intersection of 2 rings creates a potential endpoint of an arc)

How many different minor arcs are in the diagram? (The intersection of 2 rings creates a potential endpoint of an arc)

