Calculus: Trapezoid Rule

Notes, Examples, and Practice Test (with Solutions)

Calculus: Trapezoid Rule

What is it? A method for estimating the *area under a curve*.

A method for approximating the value of a *definite integral*It uses linear measures of a function to create "trapezoidal areas"

Definition:

$$\int_{a}^{b} f(x) dx = \frac{\triangle x}{2} [f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-1}) + f(x_n)]$$

where $\triangle x$ is the measure of each sub-interval $\frac{b-a}{n}$

Explanation and Find the area *under the curve* from a to b.

Step 1: Determine the number of partitions (n)

(note: the greater the number of partitions, the more accurate the approximation of the area)

Step 2: Divide the interval
$$[a, b]$$
 into n sub-intervals

Since n = 6, there are 6 subintervals (creating 6 regions)

Step 3: Draw segments "connecting the tops" of the vertical lines

This creates 6 trapezoids!

Step 4: Add up the areas of the trapezoids

Area of Trapezoid:
$$\frac{1}{2}$$
 (b₁ + b₂)h
where h = height
b₁ = upper base
b₂ = lower base

(After taking out the greatest common factors and collecting the like terms,)

The sum of the 6 trapezoids:

$$\frac{\triangle x}{2} \left[(f(x_0) + 2f(x_1) + 2f(x_2) + 2f(x_3) + 2f(x_4) + 2f(x_5) + f(x_6) \right]$$

Area of first trapezoid:

$$h = \frac{b-a}{n} = \bigwedge x$$
(the distance from x_0 to x_1)
$$b_1 = f(x_0)$$
(the distance from the x-axis to $f(x_0)$)
$$b_2 = f(x_1)$$

(the distance from the x-axis to $f(x_1)$

$$\frac{1}{2} \left[(f(\mathbf{x}_0) + f(\mathbf{x}_1)) \right] \triangle \mathbf{x}$$

Area of second trapezoid:

 $\frac{1}{2} [(f(x_1) + f(x_2))] \triangle x$

Calculus: Trapezoid Rule

Example: Using the trapezoid rule, where the number of sub-intervals n = 4, approximate the area under f(x) in the interval [0, 2].

Then, using the definite integral $\int_{0}^{2} f(x) dx$ compare your estimate with the true value.

Step 1: Divide into n sub-intervals

Each sub-interval will be 1/2 $\frac{2-0}{4} = 1/2$

Step 2: Draw line segments "connecting the tops"

Find the values at each sub-interval:

$$f(0) = 1$$

$$f(1/2) = 5/4$$

$$f(1) = 2$$

$$f(3/2) = 13/4$$

$$f(2) = 5$$

Step 3: Add up the trapezoids.

Area =
$$\frac{1}{2}$$
 (base 1 + base 2)(height)

trapezoid 1:
$$\frac{1}{2}(1+5/4)(1/2) = \frac{9}{16}$$

trapezoid 2:
$$\frac{1}{2} (5/4 + 2)(1/2) = \frac{13}{16}$$

trapezoid 3:
$$\frac{1}{2} (2 + 13/4)(1/2) = \frac{21}{16}$$

trapezoid 4:
$$\frac{1}{2}$$
 (13/4 + 5)(1/2) = $\frac{33}{16}$

Total:
$$\frac{76}{16} = 4.75$$

Observation: If the curve is *concave up*, the trapezoid rule will *overestimate* the area. If the curve is *concave down*, the trapezoid rule will *underestimate* the area. (And, if it is a straight line, it will give the exact area.)

The actual area:

$$\int_{0}^{2} f(x) dx = \int_{0}^{2} x^{2} + 1 dx \qquad \frac{x^{3}}{3} + x \Big|_{0}^{2} = \frac{(2)^{3}}{3} + (2) - \left(\frac{(0)^{3}}{3} + (0)\right) = \frac{14}{3} = 4.6\overline{6}$$

Since the curve is concave up in the interval, the trapezoid rule overestimated the actual area!

5	6 f(x) dx
U	

X		0	1	2	3	4	5	6
f(2	()	12	10	6	5	8	10	17

Since the partitions (intervals) are uniform, we can use the trapezoid rule formula.

$$\int_{0}^{6} f(x) dx = \frac{\triangle x}{2} [f(x_{0}) + 2f(x_{1}) + ... + 2f(x_{5}) + f(x_{6})]$$

$$= \frac{1}{2} [12 + 2(10) + 2(6) + 2(5) + 2(8) + 2(10) + 17]$$

$$= \frac{1}{2} [107] = 53.5$$

Or, adding the 6 trapezoids individually:

$$11 + 8 + 5.5 + 6.5 + 9 + 13.5 = 53.5$$

Example: Use the table of values to estimate $\int_{1}^{11} f(x) dx$

X	0	1	4	8	11	16	18
f(x)	2	3	8	16	13	7	3

Since the intervals are not uniform, we need to evaluate each trapezoid separately (rather than use the formula).

Also, since the integral is evaluating the interval from 1 to 11, we'll only use part of the table.

Trapezoid 1:
$$\frac{1}{2}(3+8)(3) = 33/2$$

Trapezoid 2:
$$\frac{1}{2}$$
 (8 + 16)(4) = 48

Trapezoid 3:
$$\frac{1}{2}(16+13)(3) = 87/2$$

Total Area: 108

Calculus: Trapezoid Rule

Example: Use the trapezoid rule to approximate the area under the function f(x) = -2x + 8for the interval [1, 4]. Use six sub-intervals. (n = 6)

Then, use the definite integral to determine the exact area.

$$f(1) = 6$$
SIX
 $f(1.5) = 5$
Sub-intervals
 $f(2) = 4$
 $f(2.5) = 3$
 $f(3) = 2$
 $f(3.5) = 1$
 $f(4) = 0$

The total interval length is 3 units (from 1 to 4)
After dividing by 6, each sub-interval = .5

$$\frac{1}{2} (.5) [6 + 2(5) + 2(4) + 2(3) + 2(2) + 2(1) + 0]$$

$$= \frac{1}{2} (.5) [36] = 9$$

Calculus: Trapezoid Rule

Since the function is linear, the definite integral should equal the trapezoid approximation!

$$\int_{1}^{4} -2x + 8 dx = -x^{2} + 8x \Big|_{1}^{4} = -(4)^{2} + 8(4) - [-(1)^{2} + 8(1)] = -16 + 32 - 7 = 9$$

Example: Use the trapezoid rule to approximate the area between the function $g(x) = -(\frac{1}{2}x)^2 + 5$, x = 4, the x-axis, and the y-axis.

- a) Use 4 sub-intervals
- b) Use 8 sub-intervals
- c) Compare with the definite integral

interval is
$$[0, 4]$$
 -- each sub-interval is 1

(the height height of each trapezoid)

$$g(0) = 5$$

$$g(1) = 19/4$$

$$g(2) = 4$$

$$g(3) = 11/4$$

$$g(4) = 1$$

(the bases of the trapezoids)

(sum of 4 trapezoids)

$$\frac{1}{2}(5+19/4)(1) + \frac{1}{2}(19/4+4)(1) + \frac{1}{2}(4+11/4)(1) + \frac{1}{2}(11/4+1)(1) =$$

$$\frac{39}{8} + \frac{35}{8} + \frac{27}{8} + \frac{15}{8} = \boxed{14.5}$$

b) Using 8 sub-intervals:

interval is [0, 4] -- each sub-interval is .5

$$g(0) = 5$$

 $g(1) = 19/4$
 $g(2) = 4$
 $g(3) = 11/4$
 $g(4) = 1$
 $g(5) = 79/16$
 $g(1.5) = 71/16$
 $g(2.5) = 55/16$
 $g(3.5) = 31/16$

(height) (all the bases of the trapezoids)
$$\frac{1}{2}(.5) \left[5 + 2(79/16) + 2(19/4) + 2(71/16) + 2(4) + 2(55/16) + 2(11/4) + 2(31/16) + 1 \right]$$

$$\frac{1}{2}$$
(.5) [14 + 236/8 + 30/2] = $\frac{1}{2}$ (.5) [58.5] = 14.625

NOTE: Since the curve is concave down, the trapezoid rule underestimates the true area. Also, the more sub-intervals that are used, the more accurate the approximation!)

Math Parents -- and, embarrassed children -- on Halloween

LanceAF #57 (10-31-12) www.mathplane.com

Practice Test

Calculus: Trapezoid Rule Quiz

I. Area of Trapezoid

Find the area of each trapezoid

II. Trapezoid Sums

1) Using the trapezoid rule, where the number of sub-intervals n = 4, approximate the area under f(x) in the interval [0, 4].

2) Use the table of values to estimate

5	<i>f</i> (x)	dx
0		

X	0	1	2	3	4	5	6
f(x)	.2	8	13	16	17	14	9

3) Use the table of values to estimate

18	3	
\	g(x)dx	

X	0	1	4	8	11	16	18	20
g(x)	2	3	8	16	13	7	3	0

III. Area under a curve

Calculus: Trapezoid Rule Quiz

Approximate the following using the Trapezoid Rule. Then, compare with the evaluated definite integral. (optional: Graph the functions, showing the area under the curves and the trapezoids)

1)
$$\int_{0}^{4} \sqrt{x} + 2 dx$$
 (Use n = 4 sub-intervals)

2)
$$\int_{0}^{\pi} \cos x + 2 \ dx$$
 (Use n = 4 sub-intervals)

3) Using the trapezoidal rule, estimate the area between $y=x^3$ and the x-axis on the interval [-2, 2] (Use n=4 sub-intervals)

IV: Miscellaneous

1) Approximate the area enclosed by lines x = 3 and x = 6, the function $f(x) = -x^2 + 10x - 19$, and the x-axis.

2) Determine whether the trapezoid rule would overestimate, underestimate, or equal the area under the function $h(\mathbf{x})$ for the given intervals:

A)
$$y = \sin x \quad [0, \pi]$$

B)
$$f(x) = 3x^2 + 7$$
 [1, 4]

B)
$$f(x) = 3x^2 + 7$$
 [1, 4] C) $y = 2|x + 5| + 7$ [-4, 0] D) $g(x) = (x - 3)^3$

D)
$$g(x) = (x-3)^3$$
 [5, 1

Calculus: Trapezoid Rule Quiz

3) Using the trapezoid rule, approximate the shaded area:

mathplane.com

LanceAF #88 5-31-13 www.mathplane.com

Solutions

Calculus: Trapezoid Rule Quiz

SOLUTIONS

I. Area of Trapezoid

Find the area of each trapezoid

Area =
$$\frac{1}{2}$$
 (base₁ + base₂)(height)

Area =
$$\frac{1}{2}$$
(8 + 11)(4) = 38

Area =
$$\frac{1}{2}$$
(9 + 12)(4) = 42

II. Trapezoid Sums

1) Using the trapezoid rule, where the number of sub-intervals n = 4, approximate the area under f(x) in the interval [0, 4].

height of each

The interval span is 4... So, each of the 4 sub-intervals will each have a span of 1.

$$f(0) = 3$$
 trapezoid
 $f(1) = 5$
 $f(2) = 5.25$ bases of the trapezoids
 $f(3) = 4$
 $f(4) = 2.33$

Trapezoid 1
$$\frac{1}{2}$$
 (3 + 5)(1) = 4

Trapezoid 2
$$\frac{1}{2}$$
 (5 + 5.25)(1) = 5.125

Trapezoid 3
$$\frac{1}{2}$$
 (5.25 + 4)(1) = 4.625

Trapezoid 4
$$\frac{1}{2}$$
 (4 + 2.33)(1) = 3.165

Total (approximate) area under the function: 16.915

							U	
	X	0	1	2	3	4	5	6
•	f(x)	.2	8	13	16	17	14	9

n=6 sub-intervals (bases of the trapezoids) sub-interval lengths are 1 (height of each trapezoid)

approximate value of above integral:

$$\frac{1}{2}(1)[2+2(8)+2(13)+2(16)+2(17)+2(14)+9]$$

$$\frac{1}{2}(1)[147] = \boxed{73.5}$$

using 6 sub-intervals

Since the integral measures the function on the interval [4, 18], we'll only use part of the table! Also, note the sub-intervals will have different lengths...

Area of trapezoids:

trapezoid 1: 48 4 < x < 8 trapezoid 2: 43.5 8 < x < 11 trapezoid 3: 50 11 < x < 16 trapezoid 4: 10 16 < x < 18

total estimate: 151.5

III. Area under a curve

Approximate the following using the Trapezoid Rule. Then, compare with the evaluated definite integral. (optional: Graph the functions, showing the area under the curves and the trapezoids)

1)
$$\int_{0}^{4} \sqrt{\sqrt{x} + 2} dx$$
 (Use n = 4 sub-intervals)

since the function's interval is 0 to 4, each equal sub-interval will be 1 unit.

Then, we evaluate the function at each sub-interval:

$$f(0) = 2$$

 $f(1) = 3$ (these are the lengths of the bases of the 4 trapezoids)
 $f(3) = 3.73$
 $f(4) = 4$

sum of the 4 trapezoids:

$$\frac{1}{2}(2+3)(1) + \frac{1}{2}(3+3.41)(1) + \frac{1}{2}(3.41+3.73)(1) + \frac{1}{2}(3.73+4)(1) = 2.5 + 3.2 + 3.57 + 3.87 = \boxed{13.14}$$

$$\int_{0}^{4} \sqrt{x} + 2 dx = \frac{2}{3} x^{\frac{3}{2}} + 2x \Big|_{0}^{4} = \frac{16}{3} + 8 - (0+0) = \boxed{13.33}$$

Calculus: Trapezoid Rule Quiz

Since the curve is concave down, the trapezoids will *underestimate* the actual value under the curve.

2)
$$\int_{\infty}^{\infty} \cos x + 2 \, dx$$
 (Use n = 4 sub-intervals)

Since there are 4 sub-intervals, we need to find the following values:

Each sub-interval is
$$cos(0) + 2 = 1 + 2 = 3$$

$$\frac{11}{4} \qquad \cos(\frac{11}{4}) + 2 = \frac{1}{\sqrt{2}} + 2 = 2.707$$

$$\cos(\frac{11}{2}) + 2 = 0 + 2 = 2$$

$$\cos(\frac{31}{4}) + 2 = \frac{1}{\sqrt{2}} + 2 = 1.293$$

$$\cos(\frac{11}{4}) + 2 = -1 + 2 = 1$$

$$\int_{0}^{\uparrow \uparrow} \cos x + 2 \, dx = \sin x + 2x \Big|_{0}^{\uparrow \uparrow} = \sin(\uparrow \uparrow) + 2(\uparrow \uparrow) - [\sin(0) + 2(0)]$$
$$= 2 \uparrow \uparrow \text{ (or approx. 6.28)}$$

The sum of the trapezoids:

$$\frac{1}{2} \cdot \frac{\text{Tr}}{4} \left(3 + 2(2.707) + 2(2) + 2(1.293) + 1 \right) = \frac{\text{Tr}}{8} \cdot (16) = \boxed{2 \text{Tr}}$$

NOTE: From 0 to $\frac{11}{2}$, the function is concave down. (so, trapezoids underestimate the area). But, from $\frac{11}{2}$ to $\frac{1}{2}$, the function is concave up. (so, trapezoids overestimate the area).

3) Using the trapezoidal rule, estimate the area between $y = x^3$ and the x-axis on the interval [-2, 2] (Use n = 4 sub-intervals)

4 sub-intervals: 1 unit each

areas must be positive values! 9/2 + 1/2 + 1/2 + 9/2 = 10 $\int_{0}^{2} x^{3} dx = \frac{x^{4}}{4} \Big|_{0}^{2} = 4 \quad \text{so, exact area is 8...}$

IV: Miscellaneous

1) Approximate the area enclosed by lines x = 3 and x = 6, the function $f(x) = -x^2 + 10x - 19$, and the x-axis.

Using 3-subintervals (n = 3),

The bases of the trapezoids will extend from the x-axis to

$$f(3) = 2$$
 $f(4) = 5$ $f(5) = 6$ $f(6) = 5$

The height of each trapezoid will be 1. $\triangle x = \frac{b-a}{n} = \frac{6-3}{3} = 1$

Area of 3 trapezoids =
$$\frac{\triangle x}{2} [f(3) + 2f(4) + 2f(5) + f(6)] = \frac{1}{2} [2 + 10 + 12 + 5] = 14.5$$

Using Integration to find exact area:

$$\int_{3}^{6} -x^{2} + 10x - 19 \, dx \qquad \frac{-x^{3}}{3} + 5x^{2} - 19x \Big|_{3}^{6} = \frac{-216}{3} + 180 - 114 - [-9 + 45 - 57] = -6 - [-21] = 15$$

SOLUTIONS

Calculus: Trapezoid Rule Quiz

2) Determine whether the trapezoid rule would overestimate, underestimate, or equal the area under the function h(x) for the given intervals:

A)
$$y = \sin x$$
 [0, π] concave down - underestimate

B)
$$f(x) = 3x^2 + 7$$
 [1, 4]
concave up -- overestimate

3) Using the trapezoid rule, approximate the shaded area:

There are many approximations...

For example, divide the area into 6 equal sub-intervals...

	-	
		base lengths
At $y = 6$,	base extends from 1 to 3	2
y = 5,	base extends from 1 to 3.5	2.5
y = 4,	base extends from 1 to 2.75	1.75
y = 3,	base extends from 1 to 2.75	1.75
y=2,	base extends from 1 to 3.5	2.5
y=1,	base extends from 1 to 6.75	5.75
y = 0,	base extends from 1 to 7	6

trapezoid 1:
$$\frac{1}{2}(2+2.5)(1) = 2.25$$

trapezoid 2: $\frac{1}{2}(2.5+1.75)(1) = 2.125$

etc...

approximate area =
$$\frac{1}{2}$$
(1)[2 + 2(2.5) + 2(1.75) + 2(1.75) + 2(2.5) + 2(5.75) + 6]
 $\frac{1}{2}$ (1)[36.5] = 18.25

Thanks for checking out this packet. (Hope it helped!)

If you have questions, suggestions, or requests, let us know.

Cheers, LAF

Mathplane.com

