Binomial Expansion

Notes, Examples, Formulas, and Practice

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{(n-k)} b^{k}
$$

Topics include factorials, combinations, polynomial multiplication, Pascal's Triangle, and more

Binomial (Expansion) Theorem	where
$\quad(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{(n-k)} b^{k} \quad\binom{n}{k}=\frac{n!}{(n-k)!k!}={ }_{n} C_{k}$	

Example: Expand the binomial $(2 \mathrm{x}+\mathrm{y})^{4}$
"Place the first terms"

$$
(2 x)^{4}+(2 x)^{3}+(2 x)^{2}+(2 x)^{1}+(2 x)^{0}
$$

"Place the second terms" $(2 \mathrm{x})^{4}(\mathrm{y})^{0}+(2 \mathrm{x})^{3}(\mathrm{y})^{1}+(2 \mathrm{x})^{2}(\mathrm{y})^{2}+(2 \mathrm{x})^{1}(\mathrm{y})^{3}+(2 \mathrm{x})^{0}(\mathrm{y})^{4}$
"Add the coefficients" $\binom{4}{0}(2 \mathrm{x})^{4}(\mathrm{y})^{0}+\binom{4}{1}(2 \mathrm{x})^{3}(\mathrm{y})^{1}+\binom{4}{2}(2 \mathrm{x})^{2}(\mathrm{y})^{2}+\binom{4}{3}(2 \mathrm{x})^{1}(\mathrm{y})^{3}+\binom{4}{4}(2 \mathrm{x})^{0}(\mathrm{y})^{4}$

Simplify

$$
\begin{aligned}
& (1)\left(16 x^{4}\right)(1)+(4)\left(8 x^{3}\right)(y)+(6)\left(4 x^{2}\right)\left(y^{2}\right)+(4)(2 x)\left(y^{3}\right)+(1)(1)\left(y^{4}\right) \\
& 16 x^{4}+32 x^{3} y+24 x^{2} y^{2}+8 x y^{3}+y^{4}
\end{aligned}
$$

Finding the term:

$$
\text { where } \mathrm{n} \geq(\mathrm{r}-1)
$$

The $r^{\text {th }}$ term of the expansion $(a+b)^{n}$ is

$$
\binom{n}{r-1} a^{n-(r-1)} b^{(r-1)}
$$

Example: Find the 15 th term of $\left(\mathrm{x}^{2}+\mathrm{y}\right)^{22}$

$$
\begin{aligned}
& \binom{22}{15-1}\left(\mathrm{x}^{2}\right)^{22-(15-1)}(\mathrm{y})^{(15-1)} \\
& \binom{22}{14}\left(\mathrm{x}^{2}\right)^{8}(\mathrm{y})^{14} \\
& 319,770 \mathrm{x}^{16} \mathrm{y}^{14}
\end{aligned}
$$

Alternative method (if you forget the formula)...
"Begin the binomial expansion and determine the pattern!"
$\binom{22}{0}\left(\mathrm{x}^{2}\right)^{22}(\mathrm{y}){ }^{0}+\binom{22}{1}\left(\mathrm{x}^{2}\right)^{21}(\mathrm{y})^{1}+\binom{22}{2}\left(\mathrm{x}^{2}\right)^{20}(\mathrm{y})^{2}$
so, the 15 th term will be... $\binom{22}{14}$
(observe: the difference between the 1st term and 15th term is 14 terms...)

$$
\left(x^{2}\right)^{8}
$$

$$
(\mathrm{y})^{14}
$$

Example: Find the constant term in the binomial expansion of $\left(x^{2}+\frac{3}{x}\right)^{15}$

since the 'a' and ' b ' terms are multiplied, we need to figure out which term would cancel the variable x ...
In other words, which term will have an exponent in the $3 / x$ term that is double

$$
15^{C} 5 \cdot\left(x^{2}\right)^{5}\left(\frac{3}{x}\right)^{10}
$$ the exponent in the x^{2} term

Pascal's Triangle

$\binom{6}{2} \sim$ 7th row, 3rd position... 15

$$
\frac{6!}{4!2!}=\frac{6 \times 5 \times 4 \times 3 \times 2 \times 1}{(4 \times 3 \times 2 \times 1) \times 2 \times 1}=\frac{30}{2}=15
$$

Example: What is $\binom{5}{0}+\binom{5}{1}+\binom{5}{2}+\binom{5}{3}+\binom{5}{4}+\binom{5}{5}$?
This is the 6th row in Pascal's Triangle...

$$
\begin{aligned}
& 1 \\
& 11 \\
& 121 \\
& 1+5+10+10+5+1=32 \\
& \begin{array}{llll}
1 & 3 & 3 & 1
\end{array} \\
& \begin{array}{lllll}
1 & 4 & 6 & 4 & 1
\end{array} \\
& \begin{array}{llllll}
1 & 5 & 10 & 10 & 5 & 1
\end{array} \\
& \begin{array}{lllllll}
1 & 6 & 15 & 20 & 15 & 6 & 1
\end{array} \\
& \begin{array}{llllllll}
1 & 7 & 21 & 35 & 35 & 21 & 7 & 1
\end{array} \\
& \begin{array}{lllllllll}
1 & 8 & 28 & 56 & 70 & 56 & 28 & 8 & 1
\end{array}
\end{aligned}
$$

Practice Exercises - \rightarrow

I. Expand the following:

1) $(x+y)^{5}=$
2) $(\mathrm{m}-\mathrm{p})^{7}=$
3) $(b+2)^{4}=$
4) $(2 x-3)^{5}=$
5) $\left(x^{2}+y^{3}\right)^{6}=$
II. Find the term:
6) $(x+4 y)^{7} \quad 5$ th term
7) $(3 x-2)^{12} \quad 6$ th term
8) $\left(2 m+p^{2}\right)^{24}$ 9th term
A) Condense/Simplify the following Binomial Expansions...
9) $\binom{5}{0} \mathrm{a}^{10}+\binom{5}{1} 3 \mathrm{a}^{8} \mathrm{~b}+\binom{5}{2} 9 \mathrm{a}^{6} \mathrm{~b}^{2}+\binom{5}{3} 27 \mathrm{a}^{4} \mathrm{~b}^{3}+\binom{5}{4} 81 \mathrm{a}^{2} \mathrm{~b}^{4}+\binom{5}{5} 243 \mathrm{~b}^{5}$
10) $\binom{4}{0} 5^{4}+\binom{4}{1} 5^{3}(-2)^{1}+\binom{4}{2} 5^{2}(-2)^{2}+\binom{4}{3} 5^{1}(-2)^{3}+\binom{4}{4}(-2)^{4}$
B) Use binomial expansion to find:
11) $(1.001)^{4}$
Hint: $.001=10^{-3}$
12) $(.998)^{3} \quad$ Hint: $.002=2(10)^{-3}$
C) Miscellaneous
13) What is the 5 th term in the expansion of $\left(x+3 y^{2}\right)^{5}$?
14) What is the coefficient of the st^{2} term in the expansion of $(\mathrm{s}-5 \mathrm{t})^{3}$?
15) In the expansion of $(2 \mathrm{k}+2)^{18}$, what is the term that includes k^{7} ?
16) Find the x^{3} term from the expansion $\left(2 x+\frac{8}{x}\right)^{7}$
17) Solve the following: find n

$$
\binom{\mathrm{n}}{6}=3\binom{\mathrm{n}-1}{5}
$$

1) $(x+y)^{5}=$ step 1: x terms

$$
x^{5}+x^{4}+x^{3}+x^{2}+x^{1}+x^{0}
$$

step 2: y terms
step 3: coefficients $\binom{5}{0} \quad\binom{5}{1} \quad\binom{5}{2} \quad\binom{5}{3} \quad\binom{5}{4} \quad\binom{5}{5}$
2) $(\mathrm{m}-\mathrm{p})^{7}=$

$$
x^{5}+5 x^{4} y+10 x^{3} y^{3}+10 x^{2} y^{3}+5 x y^{4}+y^{5}
$$

$$
m^{7}-7 m^{6} p+21 m^{5} p^{2}-35 m^{4} p^{3}+35 m^{3} p^{4}-21 m^{2} p^{5}+7 m^{6} p-p^{7}
$$

3) $(b+2)^{4}=$

> | step 1: first terms --- | b^{4} | b^{3} | b^{2} | b^{1} | b^{0} |
| :--- | :---: | :---: | :---: | :---: | :---: |
| step 2: second terms --- | 2^{0} | 2^{1} | 2^{2} | 2^{3} | 2^{4} |
| step 3: coefficients --- | $\binom{4}{0}$ | $\binom{4}{1}$ | $\binom{4}{2}$ | $\binom{4}{3}$ | $\binom{4}{4}$ |
| combine and simplify --- | $\mathrm{b}^{4}+8 \mathrm{~b}^{3}+24 \mathrm{~b}^{2}+32 \mathrm{~b}+16$ | | | | |

4) $(2 x-3)^{5}=$
first term: $\binom{5}{0}(2 \mathrm{x})^{5}(-3)^{0}=\frac{5!}{5!0!}\left(32 \mathrm{x}^{5}\right)(1)$
second term: $\binom{5}{1}(2 \mathrm{x})^{4}(-3)^{1}=\frac{5!}{4!1!}\left(16 \mathrm{x}^{5}\right)(-3)=-15\left(16 \mathrm{x}^{5}\right)$
etc....

$$
32 x^{5}-240 x^{4}+720 x^{3}-1080 x^{2}+810 x-243
$$

5) $\left(x^{2}+y^{3}\right)^{6}=$

$$
x^{12}+6 x^{10} y^{3}+15 x^{8} y^{6}+20 x^{6} y^{9}+15 x^{4} y^{12}+6 x^{2} y^{15}+y^{18}
$$

II. Find the term:

1) $(x+4 y)^{7}$

5th term

$$
\binom{7}{5-1} x^{7-(5-1)}(4 y)^{5-1}
$$

$$
\binom{7}{4} \mathrm{x}^{3}(4 \mathrm{y})^{4}=35 \mathrm{x}^{3}\left(256 \mathrm{y}^{4}\right)=8960 \mathrm{x}^{3} \mathrm{y}^{4}
$$

2) $(3 x-2)^{12}$

6th term find the pattern:
$\begin{aligned} & \left.\text { 1st term: } \begin{array}{c}\binom{12}{0}(3 \mathrm{x})^{12}(-2)^{0} \\ \text { 2nd term: } \\ \binom{12}{1}(3 \mathrm{x})^{11}(-2)^{1}\end{array} \text { the 6th term will be } \begin{array}{c}12 \\ 5\end{array}\right) \\ & (3 \mathrm{x})^{7} \quad(-2)^{5} \\ & 792 \\ & 2187 \mathrm{x}^{7}\end{aligned}-3 \begin{aligned} & -55427328 \mathrm{x}^{7}\end{aligned}$
3) $\left(2 m+p^{2}\right)^{24}$ 9th term

$$
\begin{aligned}
\left(\begin{array}{c}
24 \\
8
\end{array}\right\}(2 \mathrm{~m})^{16}\left(\mathrm{p}^{2}\right)^{8} & =735,471 \quad 65,536 \mathrm{~m}^{16} \mathrm{p}^{16} \\
& =48,199,827,456 \mathrm{~m}^{16} \mathrm{p}^{16}
\end{aligned}
$$

The $r^{\text {th }}$ term of the expansion $(a+b)^{n}$

$$
\binom{n}{r-1} a^{n-(r-1)} b^{(r-1)}
$$

Binomial (Expansion) Theorem

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{(n-k)} b^{k}
$$

A) Condense/Simplify the following Binomial Expansions...

1) $\binom{5}{0} \mathrm{a}^{10}+\binom{5}{1} 3 \mathrm{a}^{8} \mathrm{~b}+\binom{5}{2} 9 \mathrm{a}^{6} \mathrm{~b}^{2}+\binom{5}{3} 27 \mathrm{a}^{4} \mathrm{~b}^{3}+\binom{5}{4} 81 \mathrm{a}^{2} \mathrm{~b}^{4}+\binom{5}{5} 243 \mathrm{~b}^{5} \quad\left(\mathrm{a}^{2}+3 \mathrm{~b}\right)^{5}$
2) $\binom{4}{0} 5^{4}+\binom{4}{1} 5^{3}(-2)^{1}+\binom{4}{2} 5^{2}(-2)^{2}+\binom{4}{3} 5^{1}(-2)^{3}+\binom{4}{4}(-2)^{4}$
$(5+(-2))^{4}=81$
B) Use binomial expansion to find:
3) $(1.001)^{4}$
Hint: $.001=10^{-3}$
From Pascal's triangle the coefficients will be $1,4,6,4,1$

$$
\text { 2) }(.998)^{3} \quad\left(1+10^{-3}\right)^{4}
$$

$$
1 \cdot 1^{4} \cdot 10^{0}+4 \cdot 1^{3} \cdot 10^{-3}+6 \cdot 1^{2} \cdot 10^{-6} \quad 4 \cdot 1^{3} \cdot 10^{-9} \quad 1 \cdot 1^{4} \cdot 10^{-12}
$$

$$
1+.004+.000006+.000000004+.000000000001
$$

1.004006004001
(99)

From the 4th row in Pascal's triangle, the

$$
\left(1-(2) 10^{-3}\right)^{3}
$$ coefficients will be $1,3,3,1$

$$
\begin{gathered}
1 \cdot 1^{3} \cdot\left((-2) 10^{-3}\right)^{0}+3 \cdot 1^{2} \cdot\left((-2) 10^{-3}\right)^{1}+3 \cdot 1^{1} \cdot\left((-2) 10^{-3}\right)^{2}+1 \cdot 1^{0} \cdot\left((-2) 10^{-3}\right)^{3} \\
1+-.006+.000012+-.000000008
\end{gathered}
$$

C) Miscellaneous
.994011992

1) What is the 5 th term in the expansion of $\left(x+3 y^{2}\right)^{5}$?

Note, since x^{5} is in the first term, x^{1} is in the fifth term...
Remember, a power of 5 means there will be six terms...

Coefficients for 5 th power: $1,5,10,10,5,1$

$$
\begin{aligned}
& \left\langle\begin{array}{l}
5 \\
0
\end{array}\right\rangle \mathrm{x}^{5}\left(3 y^{2}\right)^{0} \\
& (\text { first term })
\end{aligned} \quad+\ldots+\left\langle\begin{array}{l}
5 \\
4
\end{array}\right\rangle \mathrm{x}_{(\text {fifth term })}^{1}\left(3 y^{2}\right)^{4}+\binom{5}{5} \mathrm{x}^{0}\left(3 y^{2}\right)^{5}
$$

2) What is the coefficient of the $s t^{2}$ term in the expansion of $(s-5 t)^{3}$?

The st ${ }^{2}$ term occurs when the coefficient is $3 \ldots$

Coefficients for 3rd power: $1,3,3,1$

$$
\begin{aligned}
& 1 \mathrm{~s}^{3}(-5 \mathrm{t})^{0}+3 \mathrm{~s}^{2}(-5 \mathrm{t})^{1}+3 \mathrm{~s}^{1}(-5 \mathrm{t})^{2}+1 \mathrm{~s}^{0}(-5)^{3} \\
& \mathrm{~s}^{3}-15 \mathrm{~s}^{2} \mathrm{t}+75 \mathrm{st}^{2}-125 \quad \text { coefficient is } 75
\end{aligned}
$$

3) In the expansion of $(2 k+2)^{18}$, what is the term that includes k^{7} ?

$$
\ldots+\left\{\begin{array}{c}
18 \\
11
\end{array}\right\} \begin{array}{r}
(2 \mathrm{k})^{7}(2)^{11}+\ldots \\
31824 \cdot 2^{18} \mathrm{k}^{7}
\end{array}
$$

```
                                    8342470656k }\mp@subsup{}{}{7
```

4) Expand the following $(2+3 i)^{5}$

Method 1: DeMoivre's Theorem
Step 1: convert into polar cis form

Step 2: apply DeMoivre's Theorem

$$
\begin{gathered}
{[\mathrm{r} c i s \ominus]^{\mathrm{n}}=\mathrm{r}^{\mathrm{n}} \operatorname{cis}(\mathrm{n} \ominus)} \\
{[\sqrt{13} \text { cis } 56.3099]^{5}=169 \sqrt{13} \text { cis } 281.55}
\end{gathered}
$$

$$
\mathrm{r}=\sqrt{13}
$$

$$
\ominus=56.3099
$$

$$
\sqrt{13} \operatorname{cis} 56.3099^{\circ}
$$

Step 3: convert to rectangular complex form

Method 2: Binomial Expansion Theorem
Me nt Binomial Expansion Theorem

$$
(2+3 i)^{5}
$$

Step 1: Apply first part of binomial expansion
$2^{5}(3 i)^{0}+2^{4}(3 i)^{1}+2^{3}(3 i)^{2}+2^{2}(3 i)^{3}+2^{1}(3 i)^{4}+2^{0}(3 i)^{5}$

Step 2: Add the coefficients (using Pascal's triangle or combinations)

$$
\left\{\begin{array}{l}
5 \\
0
\end{array}\right\} 2^{5}(3 i)^{0}+\left(\begin{array}{l}
5 \\
1
\end{array}\right\} 2^{4}(3 i)^{1}+\left(\begin{array}{l}
5 \\
2
\end{array}\right\} 2^{3}(3 i)^{2}+\left\{\begin{array}{l}
5 \\
3
\end{array}\right\} 2^{2}(3 i)^{3}+\left(\begin{array}{l}
5 \\
4
\end{array}\right\} 2^{1}(3 i)^{4}+\left(\begin{array}{l}
5 \\
5
\end{array}\right\} 2^{0}(3 i)^{5}
$$

$$
32+80(3 i)+80\left(9 i^{2}\right)+40\left(27 i^{3}\right)+10\left(81 i^{4}\right)+243 i^{5}
$$

$$
32+240 i-720-1080 i+810+243 i
$$

$$
121-597 i
$$

5) Find the x^{3} term from the expansion $\left(2 x+\frac{8}{x}\right)^{7}$
occurs when $\binom{7}{5}(2 x)^{5}\left(\frac{8}{x}\right)^{2} \quad \longrightarrow 21\left(32 x^{5}\right)\left(\frac{64}{x^{2}}\right)$ $43008 x^{3}$
6) Solve the following: find $n \quad \frac{n!}{6!(n-6)!}=\frac{3(n-1)!}{(n-6)!\cdot 5!}$

$$
\frac{\mathrm{n} \text { n! }}{6}=\frac{3(\mathrm{n} / 1)!}{1} \quad \text { answer: } \mathrm{n}=18
$$

$$
\begin{aligned}
& \binom{n}{6}=3\binom{n-1}{5} \\
& \frac{n!}{6!(n, b)!}=\frac{3(n-1)!}{(n-6)!\cdot 5!} \\
& \frac{\mathrm{n}!}{6!}=\frac{3(\mathrm{n}-1)!}{5!}
\end{aligned}
$$

$$
\begin{aligned}
& (2 x)^{7}\left(\frac{8}{x}\right)^{0} \Rightarrow x^{7} \quad(2 x)^{4}\left(\frac{8}{x}\right)^{3} \Rightarrow x^{1} \\
& (2 x)^{6}\left(\frac{8}{x}\right)^{1} \Rightarrow x^{5} \\
& (2 x)^{3}\left(\frac{8}{x}\right)^{4} \Rightarrow x^{-1} \\
& \text { etc... } \\
& (2 x)^{5}\left(\frac{8}{x}\right)^{2} \Rightarrow x^{3}
\end{aligned}
$$

Thanks for visiting. (Hope it helped!)
If you have questions, suggestions, or requests, let us know.
Cheers

Mathplane Express for mobile and tablets at Mathplane.org

Also, at TES and TeachersPayTeachers

