Area and Perimeter of Polygons 1

Includes formulas, examples, and practice questions
(w/answers)

$$
\text { Area }=1 w
$$

$$
\begin{gathered}
\text { Perimeter }=21+2 \mathrm{w} \\
1=\text { length } \\
\mathrm{w}=\text { width }
\end{gathered}
$$

Example:

$$
\begin{aligned}
& \text { Area }=1 \mathrm{w}=(5)(3)=15 \text { square units } \\
& \text { Perimeter }=21+2 \mathrm{w}=2(5)+2(3)=16 \text { units }
\end{aligned}
$$

Observations: the perimeter is simply adding up every side $--3+5+3+5$
the area is the number of 1 unit boxes --

15 total square units

Area and Perimeter of a Square

A square is a special type of rectangle. So, using substitution:

S

Example:

$$
\begin{aligned}
& \text { Area }=s^{2} \\
& \text { Perimeter }=4 \mathrm{~s} \\
& \qquad \mathrm{~s}=\text { side (length) }
\end{aligned}
$$

$$
\text { Area }=(s)^{2}=(s)(s)=9 \text { square units }
$$

$$
\text { Perimeter }=4(\mathrm{~s})=12 \text { units }
$$

$$
\begin{aligned}
& \text { Area }=\mathrm{bh} \\
& \text { Perimeter }=\mathrm{s}+\mathrm{b}+\mathrm{s}+\mathrm{b}=2(\mathrm{~b}+\mathrm{s}) \\
& \\
& \mathrm{s}=\text { side } \\
& \mathrm{b}=\text { base } \\
& \mathrm{h}=\text { height }
\end{aligned}
$$

Example:

$$
\begin{aligned}
& \text { Area }=\mathrm{bh}=20(12)=240 \text { square units } \\
& \text { Perimeter }=2(\mathrm{~b}+\mathrm{s})=66 \text { units }
\end{aligned}
$$

Observation: To verify the area of a parallelogram, transform the figure into a rectangle!

(length)

20

Area of rectangle is $1 \mathrm{w}=20(12)=240$ square units

$$
\begin{aligned}
& \text { Area }=\frac{1}{2} b h \\
& \text { Perimeter }=b_{1}+b_{2}+b_{3} \\
& \qquad b=\text { base } \\
& h=\text { height }
\end{aligned}
$$

Example:

$$
\begin{aligned}
& \text { Area }=\frac{1}{2} \mathrm{bh}=\frac{1}{2}(8)(4)=16 \text { square units } \\
& \text { Perimeter }=\text { sum of the sides }= \\
& \qquad 8+5+7=20 \text { units }
\end{aligned}
$$

Observation: A triangle is one-half of a rectangle, so the triangle's area is one-half!

$$
\begin{aligned}
& \text { Area of rectangle }=\mathrm{bh} \text { (i.e. length } \mathrm{x} \text { width) } \\
&=32
\end{aligned}
$$

Area of triangle $=16$

Example:
"Obtuse
Triangle"

$$
\begin{aligned}
& \text { Area }=\frac{1}{2}\left(b_{1}+b_{2}\right) \mathrm{h} \\
& \text { Perimeter }=b_{1}+b_{2}+\mathrm{s}_{1}+\mathrm{s}_{2} \\
& \qquad \begin{array}{l}
\mathrm{b}=\text { base } \\
\mathrm{s}=\text { side } \\
\mathrm{h}=\text { height }
\end{array}
\end{aligned}
$$

Example:

$$
\begin{aligned}
& \text { Perimeter }=20+13+6+15=54 \text { units } \\
& \begin{aligned}
\text { Area } & =\frac{1}{2}\left(b_{1}+b_{2}\right) \mathrm{h} \\
& =\frac{1}{2}(20+6)(12)=156 \text { square units }
\end{aligned}
\end{aligned}
$$

Observation: a trapezoid is one-half of a parallelogram

When we double the trapezoid, we get a parallelogram.
area of this parallelogram:

$$
\left(\mathrm{b}_{1}+\mathrm{b}_{2}\right)(\mathrm{h})
$$

area of each trapezoid:

$$
\frac{\left(\mathrm{b}_{1}+\mathrm{b}_{2}\right)(\mathrm{h})}{2}
$$

Area and Perimeter of a Kite

$$
\text { Area }=\frac{1}{2} \mathrm{~d}_{1} \mathrm{~d}_{2}
$$

Perimeter $=2 a+2 b$

$$
\begin{aligned}
\mathrm{a} & =\text { side } \\
\mathrm{b} & =\text { side } \\
\mathrm{d}_{1} & =\text { diagonal } \\
\mathrm{d}_{2} & =\text { diagonal }
\end{aligned}
$$

Example:

$$
\begin{aligned}
& \text { Area }=\frac{1}{2} \mathrm{~d}_{1} \mathrm{~d}_{2}=\frac{1}{2}(16)(21)=168 \text { square units } \\
& \text { Perimeter }=2 a+2 b=2(10)+2(17)=54 \text { units }
\end{aligned}
$$

Observation: A kite is 2 congruent triangles.

Observation: Since one diagonal is a perpendicular bisector, the kite consists of 4 right triangles.

$$
\begin{aligned}
& \text { Area }=\frac{1}{2} d_{1} d_{2} \\
& \text { Perimeter }=4 \mathrm{~s} \\
& \qquad \begin{array}{c}
\mathrm{s}
\end{array}=\text { side } \\
& \mathrm{d}_{1}=\text { diagonal } \\
& \mathrm{d}_{2}=\text { diagonal }
\end{aligned}
$$

Example:

Perimeter $=4 \times 10=40$ units
Area $=\frac{1}{2}(12)(16)=96$ square units
diagonal $1=12$
diagonal $2=16$

Observation: Since diagonals of a rhombus are perpendicular bisectors, there are 4 congruent right triangles.

Although I like my place at the intersection,

(the 8 square blocks of $\mathrm{L} \times \mathrm{W}$ is a beautiful area!)
sometimes it's nice to go off the grid...

LanceAF \#88 5-31-13
www.mathplane.com

Practice Quiz (w/solutions)

Determine the area and perimeter of each polygon:
1)
8.5 meters

2)

3)

4)

5)

Determine the area and perimeter of each (shaded) figure:
6)

7)

8)

9)

10)

$\mathrm{S}=$ \qquad $\mathrm{R}=$ \qquad

Perimeter $=$ \qquad Area $=$ \qquad
Perimeter $=168$ inches

$T=$ \qquad
$\mathrm{H}=$ \qquad

Area $=$ \qquad
Trapezoid

Perimeter $=$ \qquad

Circumference $=12$ feet

(diameter) $\mathrm{D}=$ \qquad

Area $=$ \qquad
Area $=540$ sq. meters

$\mathrm{H}=$ \qquad

$\mathrm{F}=$ \qquad

Perimeter $=$ \qquad
$B=$ \qquad
\qquad

Area $=100$ sq. units

$\mathrm{M}=$ \qquad
$\mathrm{G}=$ \qquad

Answer the following questions:

1) What is the area of the parallelogram? The perimeter?

2) If the area of a square is 144 square feet, what is the perimeter?
3) The length of a rectangle is twice its width. If the perimeter is 66 cm , what is the area?
4) What is the area of a 5-12-13 special right triangle?
** Challenge: Given: Rectangle ABCD

$$
\begin{aligned}
& \overline{\mathrm{AC}}=2 \mathrm{x}+5 \quad \text { What is the perimeter of } \square \mathrm{ABDC} ? \\
& \overline{\mathrm{AD}}=6 \mathrm{x}-1 \\
& \overline{\mathrm{BD}}=3 \mathrm{y}-6 \\
& \overline{\mathrm{BC}}=2 \mathrm{y}+8
\end{aligned}
$$

A) The diagonals of a rhombus are 6 and 8 . What is the height?
B) A trapezoid with perimeter 44 has non-parallel sides of length 8 and 10 . If the height is 5 , what is the area of the trapezoid?
What is the length of each base?
C) What is the area and perimeter of each parallelogram?
1)

2)

D) Find the area of a trapezoid with sides 12, 17, 40, and 25 where 12 and 40 are the bases.

What is the shaded area?

SOLUTIONS- \rightarrow

$$
\text { area of rectangle }=(\text { length })(\text { width })
$$

$$
=(8.5 \mathrm{~m})(6 \mathrm{~m})=51 \text { square meters }
$$

$$
\text { perimeter of rectangle }=2(\text { width })+2 \text { (length })
$$

$$
=2(6 \mathrm{~m})+2(8.5 \mathrm{~m})=29 \text { meters }
$$

2)

area of parallelogram $=($ base $)($ height $)$

$$
=(18 \mathrm{yds})(12 \mathrm{yds})=216 \mathrm{yds}^{2}
$$

perimeter of parallelogram $=2($ base $)+2($ slant height/side $)$
(add all the sides)
$=2(18 \mathrm{yds})+2(13 \mathrm{yds})=62 \mathrm{yds}$
3)

Using quadratic formula (and remembering special right
 triangles), we can determine the length of the base....
4)

3 feet, 4 inches $=40$ inches
www.mathplane.com

$$
\begin{aligned}
\text { Area of trapezoid } & =\frac{1}{2} \text { (base1 }+ \text { base } 2 \text {)(height) } \\
& =\frac{1}{2}(12+6)(4)=36 \text { sq. units }
\end{aligned}
$$

Perimeter $=$ sum of the sides $=5+6+5+12=28$ units
5)

Note: the area of the left triangle is 6 units, the area of the middle rectangle is 24 units: and the area of the right triangle is 6 units... total: 36 units!!
Perimeter of square $=4($ side $)=4(40$ inches $)=\begin{gathered}160 \text { inches } \\ \text { or } 13^{\prime} 4^{\prime \prime}\end{gathered}$
Area of square $=(\text { side })^{2}=(40$ inches $)(40$ inches $)=$

$$
\left(\frac{10}{3} \mathrm{ft}\right)^{2}=\frac{100}{9} \mathrm{ft}^{2}=11.11 \text { sq. } \mathrm{ft}
$$

Determine the area and perimeter of each (shaded) figure:
6)

7)

8)

9)

10)

SOLUTIONS

Area and Perimeter of Polygons Quiz

Area of upper triangle: Perimeter is sum of all the sides..
$\frac{1}{2}(6)(18)=54$

$$
10+18+16+?
$$

use pythagorean theorem
Area of lower rectangle:
$(10)(18)=180$
total area: 234 sq. units

$$
\begin{gathered}
18^{2}+6^{2}=c^{2} \\
c=\sqrt{360}=6 \sqrt{10} \\
\text { perimeter }=44+6 \sqrt{10} \\
\hline
\end{gathered}
$$

Using the small right triangle, we

> Using Pythagorean Theorem:
find the height is 12
(9-12-15 Pythagorean Triple)

$$
12^{2}+20^{2}=c^{2}
$$

then, $\mathrm{A}=1 / 2$ (base)(height)

$$
\mathrm{c}=\sqrt{544}=4 \sqrt{34}
$$

$$
\mathrm{A}=1 / 2(20)(12)=120
$$

$$
\text { Perimeter }=32+4 \sqrt{34}
$$

Recognizing the 30-60-90 right triangle, we can find the length of the parallelogram's, small sides.

$$
\begin{gathered}
2 \times 17=34 \\
\text { perimeter }=2(34)+2(60)=188
\end{gathered}
$$

Then, we know the height of the parallelogram is $17 \sqrt{3}$
(30-60-90 right triangle)
area $=$ base x height

$$
=60 \times 17 \sqrt{3}=1020 \sqrt{3}
$$

$$
\begin{array}{lrl}
\text { Perimeter is sum of } 4 \text { sides: } & \text { Area } & =\frac{1}{2} \mathrm{~d}_{1} \mathrm{~d}_{2} \\
\hline 2 \sqrt{89}+2 \sqrt{221} \text { units } & & =\frac{1}{2}(10)(22)=\begin{array}{l}
110 \text { sq. } \\
\text { units }
\end{array}
\end{array}
$$

Also, area of kite is sum of 4 right triangles' areas:

$$
35+35+20+20=110 \text { sq. units }
$$

Perimeter $=24+2 / \sqrt{58}$

$$
\begin{gathered}
\text { Area }=\frac{21}{2}+\frac{21}{2}+\frac{3}{2} \sqrt{135}+\frac{3}{2} \sqrt{135} \\
=21+9 \sqrt{15}
\end{gathered}
$$

$$
\text { or, } \frac{1}{2}(6)(7+\sqrt{135})=21+3 \sqrt{135}
$$

$$
\mathrm{S}=7 \text { feet }
$$

Perimeter $=\underline{28 \text { feet }}$

$$
\mathrm{R}=10 \text { feet }
$$

$$
\text { Area }=80 \text { sq. feet }
$$

Circumference $=\underline{18 \pi \text { meters }}$

$$
P=5+10+4+13
$$

$$
\mathrm{H}=4 \text { inches }
$$

$$
\begin{aligned}
& M=8 \text { units } \\
& \begin{array}{c}
100=1 / 2(25)(M) \\
M=8 \text { units }
\end{array}
\end{aligned}
$$

Circumference $=12$ feet

(diameter) $\mathrm{D}=3.82$ feet (approx.)
Area $=\underline{3.65 \pi \text { feet }^{2}}$ or 11.5 sq. feet (approx.)

$\mathrm{H}=\underline{24 \text { meters }}$

Perimeter $=120$ meters

> Triangle
> Area $=1 / 2$ (base)(height)
> $540=1 / 2(45)(\mathrm{H})$
> $1080=45 \mathrm{H}$

Area $=216 \mathrm{~cm}^{2}$
Perimeter $=62 \mathrm{~cm}$

$$
\mathrm{F}=12 \mathrm{~cm}
$$

$$
\mathrm{G}=13 \mathrm{~cm}
$$

Area of parallelogram $=($ base $)$ (height)

$$
\begin{aligned}
216 \mathrm{~cm}^{2} & =18 \mathrm{~cm}(\mathrm{~F}) \\
12 \mathrm{~cm} & =\mathrm{F}
\end{aligned}
$$

1) What is the area of the parallelogram? The perimeter?

$$
\begin{aligned}
& \text { Area }=(\text { base })(\text { height })=(9)(4)=36 \text { sq. units } \\
& \text { Perimeter }=\text { sum of the sides }=5+9+5+9=28 \text { units }
\end{aligned}
$$

2) If the area of a square is 144 square feet, what is the perimeter?

$$
\begin{array}{lll}
\text { Area }=(\text { side })(\text { side }) & \begin{array}{l}
\text { If each side }=12, \\
\text { then the perimeter }
\end{array} \\
144=(\text { side })^{2} & \begin{array}{l}
\text { square root } \\
\text { both sides }
\end{array} & 12=\text { side }
\end{array} \begin{aligned}
& \text { is } 4 \times 12=48 \text { units }
\end{aligned}
$$

3) The length of a rectangle is twice its width. If the perimeter is 66 cm , what is the area?

Perimeter: $\quad 2$ (length $)+2($ width $)=66 \mathrm{~cm} \quad$ width $=11$

$$
\begin{gathered}
2(2 \mathrm{w})+2 \mathrm{w}=66 \mathrm{~cm} \\
6 \mathrm{w}=66 \mathrm{~cm}
\end{gathered}
$$

Area $=(11 \mathrm{~cm})(12 \mathrm{~cm})$
4) What is the area of a 5-12-13 special right triangle?
$=132 \mathrm{~cm}^{2}$

** Challenge: Given: Rectangle ABCD

$$
\overline{\mathrm{AC}}=2 \mathrm{x}+5 \quad \text { What is the perimeter of } \square \mathrm{ABDC} ?
$$

$$
\overline{\mathrm{AD}}=6 \mathrm{x}-1
$$

$$
\overline{\mathrm{BD}}=3 \mathrm{y}-6
$$

1) $\overline{\mathrm{AD}}=\overline{\mathrm{BC}}$
$6 \mathrm{x}-1=2 \mathrm{y}+8$
$6 x-2 y=9$
2) $\overline{\mathrm{AC}}=\overline{\mathrm{BD}}$
$2 x+5=3 y-6$

$$
\overline{\mathrm{BC}}=2 \mathrm{y}+8
$$

$2 x-3 y=-11$
3) 2 equations with 2 unknowns
$6 x-2 y=9$
$2 x-3 y=-11$
$6 x-9 y=-33$$\quad \begin{aligned} & \text { (elimination } \\ & \text { method) }\end{aligned}$

4) $\begin{aligned} 7 y & =42 \\ y & =6\end{aligned}$
5) (Pythagorean
theorem)

Perimeter $=$
then, $x=\frac{7}{2}$

$$
\begin{gathered}
\mathrm{AC}^{2}+\mathrm{CD}^{2}=\mathrm{BC}^{2} \\
(12)^{2}+\mathrm{CD}^{2}=(20)^{2} \\
\mathrm{CD}=16
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{AB}+\mathrm{BD}+\mathrm{CD}+\mathrm{AC} \\
& 16+12+16+12 \\
& 56 \text { units }
\end{aligned}
$$

A) The diagonals of a rhombus are 6 and 8 . What is the height?

Step 1: Use the formula for a rhombus to find the area...

$$
\text { Area }=\frac{1}{2}(\text { diagonal } 1)(\text { diagonal } 2)=\frac{1}{2}(6 \times 8)=24
$$

Diagonals are perpendicular bisectors...

Step 2: Use the formula for a parallelogram to identify the height...

$$
\text { Area }=(\text { base })(\text { height }) \quad--->24=(5)(\text { height }) \quad \text { height }=4.8
$$

5
B) A trapezoid with perimeter 44 has non-parallel sides of length 8 and 10 . If the height is 5 , what is the area of the trapezoid?
What is the length of each base?

(Use Pythagorean Theorem to get missing lengths)

$$
\begin{aligned}
8+10+2 \mathrm{x}+\sqrt{39}+5 \sqrt{3} & =44 & \text { Area of Trapezoid }= \\
2 \mathrm{x}+6.24+8.66 & =26 & \left.\frac{1}{2} \text { (base } 1+\text { base } 2\right)(\text { height }) \\
2 \mathrm{x} & =11.1 & \frac{1}{2}(26)(5)=65 \text { sq units } \\
\mathrm{x} & =5.55 &
\end{aligned}
$$

$$
\begin{array}{lr}
\text { Bases: } & 5.55 \\
& 20.45
\end{array}
$$

20.45

1) Right Triangle (-12,7)	2) Isosceles Triangle $\begin{aligned} \text { Area } & =\frac{1}{2}(\text { base })(\text { height }) \\ & =\frac{1}{2}(4)(10) \\ & =20 \end{aligned}$
3) Parallelogram (opposite sides congruent)	4) Isosceles Trapezoid
5) Rectangle	6) Square
7) Rhombus	8) Parallelogram $\begin{aligned} \text { Area } & =(\text { base })(\text { height }) \\ & =(7)(3) \\ & =21 \text { sq. units } \end{aligned}$

What is the shaded area?

88
square: $\mathrm{S}^{2}=(8)^{2}=64$
circle: π^{n} (radius) $^{2}=\pi \pi^{-}(5)^{2}=25 \pi$
trapezoid: $\frac{1}{2}$ (base ${ }_{1}+$ base $\left._{2}\right)$ (height) $=\frac{1}{2}(65+88)(32)=2448$
triangle: $\frac{1}{2}$ (base)(height) $=\frac{1}{2}(10)(24)=120$
parallelogram: (base)(height) $=(11)(4)=44$
rectangle: (length)(width) $=(13)(4)=52$
Total shaded area $=$ trapezoid - "cut out" shapes
$=2448-358.5=2089.5$

$$
\text { total ("cut out") area }=280+25 \pi \quad \text { or approximately } 358.5
$$

Thanks for visiting the site. (Hope it helped!)
If you have questions, suggestions, or requests, just let us know. Best of luck!

Also, at mathplane.ORG for mobile
And, our stores at TES and TeachersPayTeachers

One more question!

A rhombus has diagonals that measure 18 and 24.
What is the height of the rhombus?
(Answer on next page)

Challenge Question: A rhombus has diagonals that measure 18 and 24. What is the height of the rhombus?

Step 1: Draw a diagram

Step 3: Solve
area of rhombus: $\frac{1}{2}$ (diagonal 1)(diagonal 2)

$$
\frac{1}{2}(18)(24)=216
$$

area of a parallelogram: (base)(height)
the diagonals of a rhombus are perpendicular bisectors

Therefore, the sides of the rhombus are 15

$$
\begin{aligned}
& 216=(\text { base }) \text { (height }) \\
& 216=(15)(\text { height }) \quad \text { height }=14.4 \text { units }
\end{aligned}
$$

15

