Algebra II: Identifying Quadratic Equation from Points

Notes, Examples, and Practice Test (w/solutions)

Topics include Factored form, Vertex form, and Standard form, solving systems, interpreting graphs, and more.

Finding the equation of a quadratic from points

I. Introduction

If three coplanar points are known, the equation of the parabola (quadratic) going through them can be determined.
If the vertex and one point are known, the quadratic equation can be identified.

What if you know the 2 x -intercepts? This is not enough information!
Example: $(1,0)$ and $(7,0)$
Although we know the axis of symmetry is $x=4$, we cannot specify the exact curve...

The diagram displays three possible parabolas that go through $(1,0)$ and $(7,0)$..
(There are an infinite number of parabolas that go through $(1,0)$ and $(7,0)$

We must know a third point to determine the precise quadratic equation.

II. Using intercept form and x -intercepts

Example: Determine the equation of a parabola that passes through $(3,0)$ and the vertex $(1,5)$
Solution: If the vertex is $(1,5)$, then the axis of symmetry is $\mathrm{x}=1$..
Since the axis of symmetry is $x=1$ and one x-intercept is $(3,0)$, then the other x -intercept must be $(-1,0) \quad$ (to maintain symmetry)

Step 1: Write general formula of quadratic

$$
y=a(x-p)(x-q) \quad \text { where } p \text { and } q \text { are the } x \text { - intercepts }
$$

Step 2: Substitute given values (to determine "a")

$$
\begin{array}{lll}
(1,5) & 5=\mathrm{a}(1--1)(1-3) \\
\mathrm{p}=-1 & 5=-4 \mathrm{a} & \\
\mathrm{q}=3 & & \mathrm{a}=\frac{-5}{4}
\end{array}
$$

Step 3: Write equation of the quadratic

$$
y=\frac{-5}{4}(x+1)(x-3)
$$

Step 4: Check answer (test the 3 points)

$$
\begin{aligned}
(-1,0): 0 & =\frac{-5}{4}(-1+1)(-1-3) \\
(3,0): 0 & =\frac{-5}{4}(3+1)(3-3) \\
(1,5): 5 & =\frac{-5}{4}(1+1)(1-3) \\
5 & =\frac{-5}{4}(-4)
\end{aligned}
$$

Finding the equation of a quadratic from points

What if we know the vertex and one point? We don't have a 3rd point. However, since one of the 2 points is a vertex, the equation can be determined.
III. Using vertex form and the vertex \& point

Example: What is the equation of a parabola with vertex $(3,1)$ that passes through $(-1,9)$?
Solution: Since we are given the vertex and a point, it is rather straightforward.

Step 1: Write the general formula for a parabola

$$
\mathrm{y}=\mathrm{a}(\mathrm{x}-\mathrm{h})^{2}+\mathrm{k} \quad \text { where }(\mathrm{h}, \mathrm{k}) \text { is the vertex } \quad(a n d(\mathrm{x}, \mathrm{y}) \text { are points on the parabola) }
$$

Step 2: Use substitution to find "a"

$$
\begin{array}{rl}
y=a(x-h)^{2}+k & 9=a(-1-3)^{2}+1 \\
(h, k)=(3,1) & 8=16 a \\
(x, y)=(-1,9) & a=\frac{1}{2}
\end{array}
$$

Step 3: Write equation of the quadratic

$$
y=\frac{1}{2}(x-3)^{2}+1
$$

Step 4: Check answer

$$
\begin{aligned}
\text { test points: } & (3,1) \\
& 1=\frac{1}{2}(3-3)^{2}+1 \\
(-1,9) & 9=\frac{1}{2}(-1-3)^{2}+1
\end{aligned}
$$

Example: A kid throws a ball out of a 2 nd floor window. The window is 20 feet above the ground.
If the ball reaches a maximum height of 30 feet when it is 50 feet from the building.
How far from the building will the ball hit the ground?
Solution: The maximum height is the vertex. So, we need another point to find the equation.

Step 1: Draw a picture, identify variables, and map points

$$
\begin{aligned}
& x=\text { distance from building } \\
& y=\text { height above ground }
\end{aligned}
$$

Step 2: Write general form of a parabola (quadratic)

$$
\mathrm{y}=\mathrm{a}(\mathrm{x}-\mathrm{h})^{2}+\mathrm{k}
$$

Step 3: Substitute to find "a"

$$
\begin{array}{rlrl}
(\mathrm{h}, \mathrm{k})=(50,30) & 20 & =\mathrm{a}(0-50)^{2}+30 \\
(\mathrm{x}, \mathrm{y})=(0,20) & -10 & =2500 \mathrm{a} \\
\mathrm{a} & =\frac{-1}{250}
\end{array}
$$

Step 4: Write the equation of the parabola (path of the projectile)

$$
y=\frac{-1}{250}(x-50)^{2}+30
$$

Step 5: Answer the question!
When the ball hits the ground, its height will be 0 .. Therefore, we need to find the coordinate ($\mathrm{x}, 0$)

$$
\begin{array}{ll}
\begin{array}{ll}
0=\frac{-1}{250}(x-50)^{2}+30 & x=-38.6 \text { or } 138.6 \\
\text { (cannot be negative; that point }
\end{array} \\
7500=(x-50)^{2} & \text { is behind the building!) }
\end{array}
$$

Finding the equation of a quadratic from points

Suppose we are given 3 points -- and neither is a vertex -- how can we find the equation of the quadratic that includes all of them?
Again, we'll use general equations and substitution....
IV: Using standard form and solving simultaneous equations
Example: The following are 3 points on a parabola: ($-1,-6$) $\quad(2,15) \quad(-3,0)$
Find the quadratic expression that represents the parabola.
Solution: We have 3 points, so we'll need to figure out which quadratic equation they have in common.

Step 1: Write standard from of a quadratic

$$
a x^{2}+b x+c=y
$$

Step 2: Substitute each point into the equation

$$
\begin{array}{ll}
(-1,-6): a(-1)^{2}+b(-1)+c=-6 & a-b+c=-6 \\
(2,15): & a(2)^{2}+b(2)+c=15
\end{array}
$$

Step 3: Solve the system of 3 equations and 3 unknowns
(calculator/using an augmented matrix)
$\left[\begin{array}{ccc:c}1 & -1 & 1 & -6 \\ 4 & 2 & 1 & 15 \\ 9 & -3 & 1 & 0\end{array}\right]$
(coefficients) a b c y
(Algebra/elimination method)

$$
1 \quad 2 \mathrm{a}-2 \mathrm{~b}+2 \mathrm{c}=-12
$$

Button	Operation
Menu	(main)
Equa	(solving equations)

EXE (solving equations)
F1 (simultaneous equations)
F2 Number of unknowns? 3
Enter the above matrix
F1 (solve)

$$
\mathrm{a}=2 \quad \mathrm{~b}=5 \quad \mathrm{c}=-3
$$

$1 \mathrm{a}-\mathrm{b}+\mathrm{c}=-6$
(2) $-\mathrm{b}+(-3)=-6$
$\begin{aligned}-\mathrm{b} & =-5 \\ \mathrm{~b} & =5\end{aligned}$

$$
\begin{aligned}
& \text { equation } 1 \quad \mathrm{a}-\mathrm{b}+\mathrm{c}=-6 \\
& 24 \mathrm{a}+2 \mathrm{~b}+\mathrm{c}=15 \\
& 39 \mathrm{a}-3 \mathrm{~b}+\mathrm{c}=0
\end{aligned}
$$

\qquad $y=2 x^{2}+5 x-3$

Step 5: Check solutions!
$(-1,-6): \quad(-6)=2(-1)^{2}+5(-1)-3$ $=2-5-3=-6$
$(2,15):(15)=2(2)^{2}+5(2)-3$
$=8+10-3=15$ V
$(-3,0): \quad(0)=2(-3)^{2}+5(-3)-3$
$=18-15-3=0$

Finding the equation of a quadratic from points
Example: A swimmer steps up to a diving board. When he dives off, his height above the water is 24 feet @ 1 second, 18 feet @ 2 seconds, and 2 feet @ 3 seconds.
a) How high is the diving board?
b) What is the peak height of the jump? When does it occur?
c) When does he hit the water?

Step 1: Sketch a graph of the dive.
The trajectory is shows an upside down parabola.

Step 2: Determine the equation that models the diver.
Standard form of a quadratic: $y=a x^{2}+b x+c$

$$
\begin{array}{lll}
(1,24): & 24=\mathrm{a}(1)^{2}+\mathrm{b}(1)+\mathrm{c} & \mathrm{a}+\mathrm{b}+\mathrm{c}=24 \\
(2,18): & 18=\mathrm{a}(2)^{2}+\mathrm{b}(2)+\mathrm{c} & 4 \mathrm{a}+2 \mathrm{~b}+\mathrm{c}=18 \\
(3,2): & 2=\mathrm{a}(3)^{2}+\mathrm{b}(3)+\mathrm{c} & 9 \mathrm{a}+3 \mathrm{~b}+\mathrm{c}=2
\end{array} \quad \begin{aligned}
& \text { Linear system: } \\
& 3 \text { equations and 3 unknowns }
\end{aligned}
$$

Using a TI nspire CX CAS: menu

3: Algebra

7: Solve System of Equations
2: Solve System of Linear Equations
('number of equations': enter 3)
The model of the diver is
When the linSolve function and template appear, enter the equations.
$x+y+z=24$
$4 x+2 y+z=18$
$9 x+3 y+z=2$
Enter
Output: $\{-5,9,20\}$
Step 3: Answer the questions
a) height of the diving board: This occurs when the diver starts -- at time $(\mathrm{t})=0 . \quad h(0)=20$
b) Peak of he dive: This would occur at the vertex -- $\quad \frac{-\mathrm{b}}{2 \mathrm{a}}=\frac{-9}{2(-5)}=.9$ seconds

$$
h(.9)=-5(.9)^{2}+9(.9)+20=24.05 \text { feet }
$$

c) Diver hits water: This occurs when the height is $0--\quad 0=-5 t^{2}+9 t+20$

Since time cannot be negative, there is only one answer: 3.09 seconds

Using the TI nspire Calculator: menu
3: algebra 1 : solve Enter the quadratic equation.

$$
-5 t^{2}+9 t+20=0, t
$$

control enter
Output: $\mathrm{t}=-1.29$ and $\mathrm{t}=3.09$

Testing the limits of endurance, these math figures will run on and on...

Practice Test- \rightarrow
I. Vertex Form -- Express the following parabolas in vertex form
A. vertex: $(2,5)$
through the point $(5,14)$
B. vertex: $(-2,-5)$
through the point $(1,22)$
C. vertex: $(3,3)$
y-intercept: $(0,-15)$
D.

E.

II. Intercept Form -- Express the following quadratics in intercept form
A. x -intercepts: $(1,0)(5,0)$ vertex: $(3,8)$
B. x-intercepts: $(-3,0)(5,0)$
another point on the curve: $(7,4)$
C. vertex: $\left(\frac{-3}{2}, \frac{-25}{2}\right)$
y -intercept: $(0,-8)$
D.

E.

III. Standard Form -- Express the following quadratics in standard form
A. x -intercepts: $(1,0)(7,0)$ y-intercept: $(0,21)$
B. Includes the following points: $(1,0)(2,11)(-4,5)$
C: Vertex: $(1,-8)$ through $(-3,0)$ and $(9,24)$

Find and sketch the parabola through the points
D.

E. Use a system of 3 equations to find the parabola that goes through the following points:
$(1,7)$
(Calculator)
$(0,10)$
(-1/2, 29/2)
F. Use a system of 3 equations to find the parabola that goes through the following points: $\quad(3,-54)$
$(7,-26)$
$(10,16)$

IV: Word Problems and Models
A) A cannon sits in a castle 50 feet above the ground.

After it is fired, the cannon ball reaches a maximum height of 80 feet when it is 40 feet from the castle.
Where does it hit its target on the ground? (How far from the castle?)
B) A series of photo images show a long jumper's position during a jump.

The following are the distances and height depicted in each image:
How far did he jump?
0 feet long, 0 feet high (his inital jumping point) 3' long, 1' 9" high
15^{\prime} ' long, $3^{\prime} 9^{\prime \prime}$ high
18^{\prime} long, 3 ' high
How high did he peak during his jump?
C) A construction crew is building an arch with an 80 foot space between the bases. If you stand 10 feet from one base, the arch extends 25 feet above the spot you're standing on.

How high will the arch be?

Test Answers- -

I. Vertex Form -- Express the following parabolas in vertex form
B. vertex: $(-2,-5)$
through the point $(1,22)$
$\mathrm{y}=\mathrm{a}(\mathrm{x}-\mathrm{h})^{2}+\mathrm{k} \quad$ Check:
test point $(1,22)$
$(22)=a((1)--2)^{2}+-5$

$$
\begin{aligned}
& 22=3(1+2)^{2}-5 \\
& 22=27-5 \\
& 22=22
\end{aligned}
$$

C. vertex: $(3,3)$ y-intercept: $(0,-15)$

$$
\begin{array}{ll}
\mathrm{y}=\mathrm{a}(\mathrm{x}-\mathrm{h})^{2}+\mathrm{k} & \text { Check: } \\
\text { test point }(0,-15)
\end{array}
$$

$$
(-15)=a((0)-3)^{2}+3
$$

$$
-15=9 a+3
$$

$$
\begin{aligned}
& -15=-2(0-3)^{2}+3 \\
& -15=-18+3
\end{aligned}
$$

$$
\mathrm{a}=-2
$$

$$
-15=-15 \text { L }
$$

$$
y=-2(x-3)^{2}+3
$$

D.

$$
\mathrm{y}=\mathrm{a}(\mathrm{x}-\mathrm{h})^{2}+\mathrm{k}
$$

Check answer: (plug in 3 different points)
Vertex: $(4,2)$
through point $(2,6)$

$$
\begin{aligned}
& (6)=a((2)-4)^{2}+2 \\
& 6=4 a+2 \\
& a=1 \\
& y=(x-4)^{2}+2
\end{aligned}
$$

1) $(2,6): \quad 6=(2-4)^{2}+2$
2) $\begin{aligned}(4,2): & 2=(4-4)^{2}+2 \\ 2 & =2\end{aligned}$
3) $\begin{aligned}(5,3): & 3\end{aligned}=(5-4)^{2}+2$
E.

II. Intercept Form -- Express the following quadratics in intercept form
A. x -intercepts: $(1,0)(5,0)$ vertex: $(3,8)$

$y=a(x-p)(x-q)$ where p and q are x-intercepts ("zeros")
$y=a(x-1)(x-5)$
$(8)=a((3)-1)((3)-5)$
$8=-4 a$
$a=-2$

B. x-intercepts: $(-3,0)(5,0)$
another point on the curve: $(7,4)$
$y=a(x-p)(x-q) \quad$ (substitute to find "a")

$$
\begin{aligned}
(4) & =a((7)--3)((7)-5) \\
4 & =a(10)(2) \\
a & =1 / 5 \\
y & =\frac{1}{5}(x+3)(x-5)
\end{aligned}
$$

C. vertex: $\left(\frac{-3}{2} \frac{-25}{2}\right)$

$$
\text { y-intercept: }(0,-8) \quad \text { (expand) }
$$

$$
\begin{aligned}
& \text { (write in vertex form) } \\
& \begin{array}{l}
(-8)=a\left((0)-\frac{-3}{2}\right)^{2}+\frac{-25}{2} \\
-8=\frac{9}{4} a-\frac{25}{2} \\
\frac{9}{2}=\frac{9}{4} a \quad a=2 \\
y=2\left(x+\frac{3}{2}\right)^{2}-\frac{25}{2}
\end{array} \quad \begin{array}{l}
y=2 x^{2}+6 x+\frac{9}{2}-\frac{25}{2} \\
y=2 x^{2}+6 x-8 \\
\text { (factor) } \\
y=2\left(x^{2}+3 x-4\right) \\
y=2(x+4)(x-1)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& y=a(x-p)(x-q) \\
& p=3 \quad q=9 \\
& x=5 \quad y=-2 \\
& -2=a(5-3)(5-9) \\
& -2=-8 a \\
& a=\frac{1}{4} \\
& y=\frac{1}{4}(x-3)(x-9) \\
& \begin{array}{l}
\text { Note: test all } 3 \text { points to check } \\
\text { your answer... }
\end{array} \\
& \begin{array}{l}
y
\end{array} \\
& \begin{array}{l}
\text { y }
\end{array} \\
& \hline
\end{aligned}
$$

E.
$(5,-2)$
D.

$y=a(x-p)(x-q)$
$\mathrm{p}=-1$
$\mathrm{q}=5$
$x=0 \quad y=5$
$5=\mathrm{a}(0--1)(0-5)$
$5=-5 a$
$\mathrm{a}=-1$
$y=-(x+1)(x-5)$

> A. vertex: $(2,5)$
> through the point $(5,14)$
> $y=a(x-h)^{2}+k$
> $(14)=\mathrm{a}((5)-2)^{2}+5$
> $14=9 a+5$

$$
y=a x^{2}+b x+c
$$

III. Standard Form -- Express the following quadratics in standard form

$$
\begin{aligned}
& \text { A. } \mathrm{x} \text {-intercepts: }(1,0)(7,0) \\
& y \text {-intercept: }(0,21) \\
& \mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=\mathrm{y} \quad \text { (set up } 3 \text { equations, } \\
& \mathrm{a}(1)^{2}+\mathrm{b}(1)+\mathrm{c}=0 \\
& \mathrm{a}(7)^{2}+\mathrm{b}(7)+\mathrm{c}=0 \\
& a(0)^{2}+b(0)+c=21 \\
& \begin{array}{ll}
a+b+c=0 \\
49 a+7 b+c=0 \\
c=21
\end{array} \quad \begin{array}{l}
\text { a }=3 x^{2}-24 x+21 \\
49 a+7 b=-21 \\
-7 a-7 b=147 \\
42 a=126
\end{array} \quad b=-24 \quad \begin{array}{l}
\text { (note: to check, just } \\
\text { try all } 3 \text { points in } \\
\text { your equation) }
\end{array}
\end{aligned}
$$

Find and sketch the parabola through the points
D.

E. Use a system of 3 equations to find the parabola that $\begin{array}{ll}\text { goes through the following points: } & (1,7) \\ & (0,10) \\ \text { (Calculator) } & (-1 / 2,29 / 2)\end{array}$
$\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=\mathrm{y} \quad$ (set up 3 equations, 3 unknowns)
$\mathrm{a}(1)^{2}+\mathrm{b}(1)+\mathrm{c}=7$
$a(0)^{2}+b(0)+c=10$

$$
4 x^{2}-7 x+10
$$

$\mathrm{a}(-1 / 2)^{2}+\mathrm{b}(-1 / 2)+\mathrm{c}=29 / 2$
$1 a+1 b+1 c=7$
$0 a+0 b+1 c=10$
$\frac{1}{4} \mathrm{a}+\frac{-1}{2} \mathrm{~b}+1 \mathrm{c}=\frac{29}{2}$
(Input the coefficients into the calculator to solve)

$$
\begin{aligned}
& \mathrm{a}=4 \\
& \mathrm{~b}=-7 \\
& \mathrm{c}=10
\end{aligned}
$$

B. Includes the following points:
$(1,0) \quad(2,11) \quad(-4,5)$
through $(-3,0)$ and $(9,24)$

$$
\left.\left.\left.\begin{array}{l}
\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=\mathrm{y} \\
\mathrm{a}(1)^{2}+\mathrm{b}(1)+\mathrm{c}=0 \\
\mathrm{a}(2)^{2}+\mathrm{b}(2)+\mathrm{c}=11 \\
\mathrm{a}(-4)^{2}+\mathrm{b}(-4)+\mathrm{c}=5
\end{array} \quad \begin{array}{l}
\text { (set up 3 equations } \\
\text { with } 3 \text { unknowns) }
\end{array}\right] \begin{array}{ccc:c}
1 & 1 & 1 & 0 \\
4 & 2 & 1 & 11 \\
16 & -4 & 1 & 5
\end{array}\right] \quad \begin{array}{l}
\text { (use coefficients } \\
\text { and solution in } \\
\text { a matrix) }
\end{array}\right]
$$

check: $(1,0)--2+5-7=0$
$(-4,5)--32-20-7=5$
C: Vertex: $(1,-8)$

> (express in vertex form)

$$
y=\frac{1}{2}\left(x^{2}-2 x+1\right)-8
$$

$$
y=\frac{1}{2} x^{2}-x-\frac{15}{2}
$$

$(2,11)--8+10-7=11$

$$
a x^{2}+b x+c=y
$$

$$
(1,12): \quad \mathrm{a}(1)^{2}+\mathrm{b}(1)+\mathrm{c}=12
$$

$$
(-1,8): \quad a(-1)^{2}+b(-1)+c=8
$$

$$
(7,0): \quad \mathrm{a}(7)^{2}+\mathrm{b}(7)+\mathrm{c}=0
$$

$$
\begin{array}{ll}
a+b+c=12 & \text { (solve with matrix, } \\
a-b+c=8 & \text { substitution, or } \\
49 a+7 b+c=0 & \text { elimination; by hand or } \\
& \text { with calculator) }
\end{array}
$$

$$
\begin{array}{ll}
\mathrm{y}=\mathrm{a}(\mathrm{x}-\mathrm{h})^{2}+\mathrm{k} & \\
0=\mathrm{a}(-3-1)^{2}+-8 & \quad \begin{array}{l}
\text { (insert vertex and 1st point } \\
0
\end{array} \\
\begin{array}{ll}
\text { to find "a") } \\
\mathrm{a} & =1 / 2-8 \\
\mathrm{y} & =\frac{1}{2}(\mathrm{x}-1)^{2}+(-8)
\end{array} & \quad \begin{array}{l}
\text { (use algebra to change } \\
\text { to standard form) }
\end{array}
\end{array}
$$

$$
\begin{aligned}
& \text { check } 3 \text { points: } \\
& (1,-8) \text { : } \\
& \quad-8=\frac{1}{2}-1-\frac{15}{2}
\end{aligned}
$$

$$
-8=-8
$$

$$
\begin{equation*}
0=9 / 2+3-15 / 2 \tag{-3,0}
\end{equation*}
$$

$$
0=0 \mathrm{~L}
$$

$$
(9,24)
$$

$$
24=81 / 2-9-15 / 2
$$

$$
33=66 / 2
$$

$$
3-00 / 2
$$

TEST 3 points
to check!
to check!
$(-1,8):-1 / 2-2+21 / 2=8$
$(1,12):-1 / 2+2+21 / 2=12$
$(7,0):-49 / 2+14+21 / 2=0$

$$
\begin{aligned}
& \mathrm{a}=-1 / 2 \\
& \mathrm{~b}=2 \\
& \mathrm{c}=101 / 2
\end{aligned} \quad-\frac{1}{2} \mathrm{x}^{2}+2 \mathrm{x}+\frac{21}{2}
$$

F. Use a system of 3 equations to find the parabola that goes

through the following points:	$(3,-54)$
	$(7,-26)$
(Use an Augmented Matrix)	$(10,16)$

IV: Word Problems and Models

A) A cannon sits in a castle 50 feet above the ground.

After it is fired, the cannon ball reaches a maximum height of 80 feet when it is 40 feet from the castle.

Where does it hit its target on the ground? (How far from the castle?)

1) draw a picture and label

The trajectory of the cannonball is a parabolic arc...
2) Identify the quadratic equation
vertex form: $y=a(x-h)^{2}+k$
(substitute to find "a")

$$
\begin{aligned}
50 & =a(0-40)^{2}+80 \\
50 & =1600 a+80 \\
a & =\frac{-3}{160}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Equation of the cannon ball: } \\
& y=\frac{-3}{160}(x-40)^{2}+80
\end{aligned}
$$

3) Answer the question

The cannonball hits the ground when the height $y=0$
$0=\frac{-3}{160}(x-40)^{2}+80$
$-80=\frac{-3}{160}(x-40)^{2}$
$4266.67=\cdot(x-40)^{2}$
$\pm 65.32=x-40$
$x=-25.32$ or 105.32
since -25.32 is behind the castle, we eliminate that possibility!

The cannonball lands
approximately 105.32 feet from the castle.
3) Answer the questions

How far? Find where he lands: $(\mathrm{x}, 0)$

$$
\begin{aligned}
& 0=-\frac{1}{36} \mathrm{x}^{2}+\frac{2}{3} \mathrm{x} \text { (mult. by }-36 \text {) } \\
& 0=\mathrm{x}^{2}-24 \mathrm{x} \\
& \mathrm{x}=0 \text { or } 24 \\
& 0 \text { is the beginning of his jump; } \\
& 24 \text { feet is where he lands! }
\end{aligned}
$$

How high? Find the vertex! axis of symmetry is $x=12$
$y=-\frac{1}{36}(12)^{2}+\frac{2}{3}(12)=4$ so, vertex is $(12,4)$ Therefore he reaches 4 feet high!
3) answer the question

The height of the arch will be at the vertex (where $\mathrm{x}=40$)
$y=\frac{-1}{28}(40-0)(40-80)$

$$
y=57.14 \text { feet }
$$

Thanks for visiting. (Hope it helped!)
If you have questions, suggestions, or requests, let us know.
Enjoy

Also, at Facebook, Google+, and TeachersPayTeachers

